| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ee4anv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| ee4anv | ⊢ (∃x∃y∃z∃w(φ ∧ ψ) ↔ (∃x∃yφ ∧ ∃z∃wψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom 1741 | . . 3 ⊢ (∃y∃z∃w(φ ∧ ψ) ↔ ∃z∃y∃w(φ ∧ ψ)) | |
| 2 | 1 | exbii 1582 | . 2 ⊢ (∃x∃y∃z∃w(φ ∧ ψ) ↔ ∃x∃z∃y∃w(φ ∧ ψ)) |
| 3 | eeanv 1913 | . . 3 ⊢ (∃y∃w(φ ∧ ψ) ↔ (∃yφ ∧ ∃wψ)) | |
| 4 | 3 | 2exbii 1583 | . 2 ⊢ (∃x∃z∃y∃w(φ ∧ ψ) ↔ ∃x∃z(∃yφ ∧ ∃wψ)) |
| 5 | eeanv 1913 | . 2 ⊢ (∃x∃z(∃yφ ∧ ∃wψ) ↔ (∃x∃yφ ∧ ∃z∃wψ)) | |
| 6 | 2, 4, 5 | 3bitri 262 | 1 ⊢ (∃x∃y∃z∃w(φ ∧ ψ) ↔ (∃x∃yφ ∧ ∃z∃wψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: cgsex4g 2893 funsi 5521 fntxp 5805 fnpprod 5844 |
| Copyright terms: Public domain | W3C validator |