Step | Hyp | Ref
| Expression |
1 | | dfsbcq2 3050 |
. . 3
⊢ (z = A →
([z / x]B ∈ C ↔
[̣A / x]̣B ∈ C)) |
2 | | dfsbcq2 3050 |
. . . . 5
⊢ (z = A →
([z / x]y ∈ B ↔
[̣A / x]̣y ∈ B)) |
3 | 2 | abbidv 2468 |
. . . 4
⊢ (z = A →
{y ∣
[z / x]y ∈ B} =
{y ∣
[̣A / x]̣y ∈ B}) |
4 | | dfsbcq2 3050 |
. . . . 5
⊢ (z = A →
([z / x]y ∈ C ↔
[̣A / x]̣y ∈ C)) |
5 | 4 | abbidv 2468 |
. . . 4
⊢ (z = A →
{y ∣
[z / x]y ∈ C} =
{y ∣
[̣A / x]̣y ∈ C}) |
6 | 3, 5 | eleq12d 2421 |
. . 3
⊢ (z = A →
({y ∣
[z / x]y ∈ B} ∈ {y ∣ [z /
x]y
∈ C}
↔ {y ∣ [̣A /
x]̣y ∈ B} ∈ {y ∣
[̣A / x]̣y ∈ C})) |
7 | | nfs1v 2106 |
. . . . . 6
⊢ Ⅎx[z / x]y ∈ B |
8 | 7 | nfab 2494 |
. . . . 5
⊢
Ⅎx{y ∣ [z / x]y ∈ B} |
9 | | nfs1v 2106 |
. . . . . 6
⊢ Ⅎx[z / x]y ∈ C |
10 | 9 | nfab 2494 |
. . . . 5
⊢
Ⅎx{y ∣ [z / x]y ∈ C} |
11 | 8, 10 | nfel 2498 |
. . . 4
⊢ Ⅎx{y ∣ [z /
x]y
∈ B}
∈ {y
∣ [z /
x]y
∈ C} |
12 | | sbab 2476 |
. . . . 5
⊢ (x = z →
B = {y
∣ [z /
x]y
∈ B}) |
13 | | sbab 2476 |
. . . . 5
⊢ (x = z →
C = {y
∣ [z /
x]y
∈ C}) |
14 | 12, 13 | eleq12d 2421 |
. . . 4
⊢ (x = z →
(B ∈
C ↔ {y ∣ [z / x]y ∈ B} ∈ {y ∣ [z / x]y ∈ C})) |
15 | 11, 14 | sbie 2038 |
. . 3
⊢ ([z / x]B ∈ C ↔ {y
∣ [z /
x]y
∈ B}
∈ {y
∣ [z /
x]y
∈ C}) |
16 | 1, 6, 15 | vtoclbg 2916 |
. 2
⊢ (A ∈ V → ([̣A / x]̣B ∈ C ↔
{y ∣
[̣A / x]̣y ∈ B} ∈ {y ∣ [̣A /
x]̣y ∈ C})) |
17 | | df-csb 3138 |
. . 3
⊢ [A / x]B =
{y ∣
[̣A / x]̣y ∈ B} |
18 | | df-csb 3138 |
. . 3
⊢ [A / x]C =
{y ∣
[̣A / x]̣y ∈ C} |
19 | 17, 18 | eleq12i 2418 |
. 2
⊢ ([A / x]B ∈ [A /
x]C ↔ {y
∣ [̣A / x]̣y ∈ B} ∈ {y ∣ [̣A /
x]̣y ∈ C}) |
20 | 16, 19 | syl6bbr 254 |
1
⊢ (A ∈ V → ([̣A / x]̣B ∈ C ↔
[A / x]B ∈ [A /
x]C)) |