New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cet | GIF version |
Description: The exponent of a T-raising to a T-raising is always a cardinal. (Contributed by SF, 13-Mar-2015.) |
Ref | Expression |
---|---|
cet | ⊢ ((M ∈ NC ∧ N ∈ NC ) → ( Tc M ↑c Tc N) ∈ NC ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tccl 6161 | . . 3 ⊢ (M ∈ NC → Tc M ∈ NC ) | |
2 | 1 | adantr 451 | . 2 ⊢ ((M ∈ NC ∧ N ∈ NC ) → Tc M ∈ NC ) |
3 | tccl 6161 | . . 3 ⊢ (N ∈ NC → Tc N ∈ NC ) | |
4 | 3 | adantl 452 | . 2 ⊢ ((M ∈ NC ∧ N ∈ NC ) → Tc N ∈ NC ) |
5 | elncs 6120 | . . . 4 ⊢ (M ∈ NC ↔ ∃x M = Nc x) | |
6 | tceq 6159 | . . . . . . 7 ⊢ (M = Nc x → Tc M = Tc Nc x) | |
7 | 6 | oveq1d 5538 | . . . . . 6 ⊢ (M = Nc x → ( Tc M ↑c 0c) = ( Tc Nc x ↑c 0c)) |
8 | vex 2863 | . . . . . . . . . 10 ⊢ x ∈ V | |
9 | 8 | ncelncsi 6122 | . . . . . . . . 9 ⊢ Nc x ∈ NC |
10 | tccl 6161 | . . . . . . . . 9 ⊢ ( Nc x ∈ NC → Tc Nc x ∈ NC ) | |
11 | 9, 10 | ax-mp 5 | . . . . . . . 8 ⊢ Tc Nc x ∈ NC |
12 | 8 | pw1ex 4304 | . . . . . . . . . 10 ⊢ ℘1x ∈ V |
13 | 12 | ncid 6124 | . . . . . . . . 9 ⊢ ℘1x ∈ Nc ℘1x |
14 | 8 | tcnc 6226 | . . . . . . . . 9 ⊢ Tc Nc x = Nc ℘1x |
15 | 13, 14 | eleqtrri 2426 | . . . . . . . 8 ⊢ ℘1x ∈ Tc Nc x |
16 | ce0nnuli 6179 | . . . . . . . 8 ⊢ (( Tc Nc x ∈ NC ∧ ℘1x ∈ Tc Nc x) → ( Tc Nc x ↑c 0c) ≠ ∅) | |
17 | 11, 15, 16 | mp2an 653 | . . . . . . 7 ⊢ ( Tc Nc x ↑c 0c) ≠ ∅ |
18 | ce0nulnc 6185 | . . . . . . . 8 ⊢ ( Tc Nc x ∈ NC → (( Tc Nc x ↑c 0c) ≠ ∅ ↔ ( Tc Nc x ↑c 0c) ∈ NC )) | |
19 | 11, 18 | ax-mp 5 | . . . . . . 7 ⊢ (( Tc Nc x ↑c 0c) ≠ ∅ ↔ ( Tc Nc x ↑c 0c) ∈ NC ) |
20 | 17, 19 | mpbi 199 | . . . . . 6 ⊢ ( Tc Nc x ↑c 0c) ∈ NC |
21 | 7, 20 | syl6eqel 2441 | . . . . 5 ⊢ (M = Nc x → ( Tc M ↑c 0c) ∈ NC ) |
22 | 21 | exlimiv 1634 | . . . 4 ⊢ (∃x M = Nc x → ( Tc M ↑c 0c) ∈ NC ) |
23 | 5, 22 | sylbi 187 | . . 3 ⊢ (M ∈ NC → ( Tc M ↑c 0c) ∈ NC ) |
24 | 23 | adantr 451 | . 2 ⊢ ((M ∈ NC ∧ N ∈ NC ) → ( Tc M ↑c 0c) ∈ NC ) |
25 | elncs 6120 | . . . 4 ⊢ (N ∈ NC ↔ ∃x N = Nc x) | |
26 | tceq 6159 | . . . . . . 7 ⊢ (N = Nc x → Tc N = Tc Nc x) | |
27 | 26 | oveq1d 5538 | . . . . . 6 ⊢ (N = Nc x → ( Tc N ↑c 0c) = ( Tc Nc x ↑c 0c)) |
28 | 27, 20 | syl6eqel 2441 | . . . . 5 ⊢ (N = Nc x → ( Tc N ↑c 0c) ∈ NC ) |
29 | 28 | exlimiv 1634 | . . . 4 ⊢ (∃x N = Nc x → ( Tc N ↑c 0c) ∈ NC ) |
30 | 25, 29 | sylbi 187 | . . 3 ⊢ (N ∈ NC → ( Tc N ↑c 0c) ∈ NC ) |
31 | 30 | adantl 452 | . 2 ⊢ ((M ∈ NC ∧ N ∈ NC ) → ( Tc N ↑c 0c) ∈ NC ) |
32 | cecl 6187 | . 2 ⊢ ((( Tc M ∈ NC ∧ Tc N ∈ NC ) ∧ (( Tc M ↑c 0c) ∈ NC ∧ ( Tc N ↑c 0c) ∈ NC )) → ( Tc M ↑c Tc N) ∈ NC ) | |
33 | 2, 4, 24, 31, 32 | syl22anc 1183 | 1 ⊢ ((M ∈ NC ∧ N ∈ NC ) → ( Tc M ↑c Tc N) ∈ NC ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∅c0 3551 ℘1cpw1 4136 0cc0c 4375 (class class class)co 5526 NC cncs 6089 Nc cnc 6092 Tc ctc 6094 ↑c cce 6097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-compose 5749 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-pw1fn 5767 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-map 6002 df-en 6030 df-ncs 6099 df-nc 6102 df-tc 6104 df-ce 6107 |
This theorem is referenced by: ce2t 6236 |
Copyright terms: Public domain | W3C validator |