| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ce0 | GIF version | ||
| Description: The value of nonempty cardinal exponentiation. Theorem XI.2.49 of [Rosser] p. 385. (Contributed by SF, 9-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| ce0 | ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → (M ↑c 0c) = 1c) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ce0ncpw1 6186 | . . . 4 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → ∃a M = Nc ℘1a) | |
| 2 | vex 2863 | . . . . . . . . 9 ⊢ a ∈ V | |
| 3 | 2 | map0e 6024 | . . . . . . . 8 ⊢ (a ↑m ∅) = {∅} | 
| 4 | ovex 5552 | . . . . . . . . 9 ⊢ (a ↑m ∅) ∈ V | |
| 5 | 4 | ncid 6124 | . . . . . . . 8 ⊢ (a ↑m ∅) ∈ Nc (a ↑m ∅) | 
| 6 | 3, 5 | eqeltrri 2424 | . . . . . . 7 ⊢ {∅} ∈ Nc (a ↑m ∅) | 
| 7 | 0ex 4111 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 8 | 2, 7 | cenc 6182 | . . . . . . 7 ⊢ ( Nc ℘1a ↑c Nc ℘1∅) = Nc (a ↑m ∅) | 
| 9 | 6, 8 | eleqtrri 2426 | . . . . . 6 ⊢ {∅} ∈ ( Nc ℘1a ↑c Nc ℘1∅) | 
| 10 | df0c2 6138 | . . . . . . . 8 ⊢ 0c = Nc ∅ | |
| 11 | pw10 4162 | . . . . . . . . 9 ⊢ ℘1∅ = ∅ | |
| 12 | 11 | nceqi 6110 | . . . . . . . 8 ⊢ Nc ℘1∅ = Nc ∅ | 
| 13 | 10, 12 | eqtr4i 2376 | . . . . . . 7 ⊢ 0c = Nc ℘1∅ | 
| 14 | oveq12 5533 | . . . . . . 7 ⊢ ((M = Nc ℘1a ∧ 0c = Nc ℘1∅) → (M ↑c 0c) = ( Nc ℘1a ↑c Nc ℘1∅)) | |
| 15 | 13, 14 | mpan2 652 | . . . . . 6 ⊢ (M = Nc ℘1a → (M ↑c 0c) = ( Nc ℘1a ↑c Nc ℘1∅)) | 
| 16 | 9, 15 | syl5eleqr 2440 | . . . . 5 ⊢ (M = Nc ℘1a → {∅} ∈ (M ↑c 0c)) | 
| 17 | 16 | exlimiv 1634 | . . . 4 ⊢ (∃a M = Nc ℘1a → {∅} ∈ (M ↑c 0c)) | 
| 18 | 1, 17 | syl 15 | . . 3 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → {∅} ∈ (M ↑c 0c)) | 
| 19 | ncseqnc 6129 | . . . 4 ⊢ ((M ↑c 0c) ∈ NC → ((M ↑c 0c) = Nc {∅} ↔ {∅} ∈ (M ↑c 0c))) | |
| 20 | 19 | adantl 452 | . . 3 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → ((M ↑c 0c) = Nc {∅} ↔ {∅} ∈ (M ↑c 0c))) | 
| 21 | 18, 20 | mpbird 223 | . 2 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → (M ↑c 0c) = Nc {∅}) | 
| 22 | 7 | df1c3 6141 | . 2 ⊢ 1c = Nc {∅} | 
| 23 | 21, 22 | syl6eqr 2403 | 1 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → (M ↑c 0c) = 1c) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∅c0 3551 {csn 3738 1cc1c 4135 ℘1cpw1 4136 0cc0c 4375 (class class class)co 5526 ↑m cmap 6000 NC cncs 6089 Nc cnc 6092 ↑c cce 6097 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-compose 5749 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-pw1fn 5767 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-map 6002 df-en 6030 df-ncs 6099 df-nc 6102 df-ce 6107 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |