New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elinti | GIF version |
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
elinti | ⊢ (A ∈ ∩B → (C ∈ B → A ∈ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintg 3935 | . . 3 ⊢ (A ∈ ∩B → (A ∈ ∩B ↔ ∀x ∈ B A ∈ x)) | |
2 | eleq2 2414 | . . . 4 ⊢ (x = C → (A ∈ x ↔ A ∈ C)) | |
3 | 2 | rspccv 2953 | . . 3 ⊢ (∀x ∈ B A ∈ x → (C ∈ B → A ∈ C)) |
4 | 1, 3 | syl6bi 219 | . 2 ⊢ (A ∈ ∩B → (A ∈ ∩B → (C ∈ B → A ∈ C))) |
5 | 4 | pm2.43i 43 | 1 ⊢ (A ∈ ∩B → (C ∈ B → A ∈ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ∀wral 2615 ∩cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-int 3928 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |