 New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  elpri GIF version

Theorem elpri 3753
 Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.)
Assertion
Ref Expression
elpri (A {B, C} → (A = B A = C))

Proof of Theorem elpri
StepHypRef Expression
1 elprg 3750 . 2 (A {B, C} → (A {B, C} ↔ (A = B A = C)))
21ibi 232 1 (A {B, C} → (A = B A = C))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 357   = wceq 1642   ∈ wcel 1710  {cpr 3738 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214  df-sn 3741  df-pr 3742 This theorem is referenced by:  nelpri  3754
 Copyright terms: Public domain W3C validator