New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  eltpi GIF version

Theorem eltpi 3770
 Description: A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpi (A {B, C, D} → (A = B A = C A = D))

Proof of Theorem eltpi
StepHypRef Expression
1 eltpg 3769 . 2 (A {B, C, D} → (A {B, C, D} ↔ (A = B A = C A = D)))
21ibi 232 1 (A {B, C, D} → (A = B A = C A = D))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ w3o 933   = wceq 1642   ∈ wcel 1710  {ctp 3739 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214  df-sn 3741  df-pr 3742  df-tp 3743 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator