| Step | Hyp | Ref
| Expression |
| 1 | | evennn 4507 |
. . . . . 6
⊢ (x ∈ Evenfin → x ∈ Nn ) |
| 2 | | evennnul 4509 |
. . . . . 6
⊢ (x ∈ Evenfin → x ≠ ∅) |
| 3 | | eldifsn 3840 |
. . . . . 6
⊢ (x ∈ ( Nn ∖ {∅}) ↔ (x
∈ Nn ∧ x ≠ ∅)) |
| 4 | 1, 2, 3 | sylanbrc 645 |
. . . . 5
⊢ (x ∈ Evenfin → x ∈ ( Nn ∖ {∅})) |
| 5 | 4 | ssriv 3278 |
. . . 4
⊢ Evenfin ⊆
( Nn ∖ {∅}) |
| 6 | | oddnn 4508 |
. . . . . 6
⊢ (x ∈ Oddfin → x ∈ Nn ) |
| 7 | | oddnnul 4510 |
. . . . . 6
⊢ (x ∈ Oddfin → x ≠ ∅) |
| 8 | 6, 7, 3 | sylanbrc 645 |
. . . . 5
⊢ (x ∈ Oddfin → x ∈ ( Nn ∖ {∅})) |
| 9 | 8 | ssriv 3278 |
. . . 4
⊢ Oddfin ⊆ (
Nn ∖ {∅}) |
| 10 | 5, 9 | pm3.2i 441 |
. . 3
⊢ ( Evenfin ⊆
( Nn ∖ {∅}) ∧ Oddfin ⊆ (
Nn ∖ {∅})) |
| 11 | | unss 3438 |
. . 3
⊢ (( Evenfin ⊆
( Nn ∖ {∅}) ∧ Oddfin ⊆ (
Nn ∖ {∅})) ↔ ( Evenfin ∪ Oddfin ) ⊆
( Nn ∖ {∅})) |
| 12 | 10, 11 | mpbi 199 |
. 2
⊢ ( Evenfin ∪ Oddfin ) ⊆
( Nn ∖ {∅}) |
| 13 | | eldifsn 3840 |
. . . 4
⊢ (n ∈ ( Nn ∖ {∅}) ↔ (n
∈ Nn ∧ n ≠ ∅)) |
| 14 | | vex 2863 |
. . . . . . . . . . . 12
⊢ m ∈
V |
| 15 | 14 | elsnc 3757 |
. . . . . . . . . . 11
⊢ (m ∈ {∅} ↔ m =
∅) |
| 16 | | df-ne 2519 |
. . . . . . . . . . . 12
⊢ (m ≠ ∅ ↔
¬ m = ∅) |
| 17 | 16 | con2bii 322 |
. . . . . . . . . . 11
⊢ (m = ∅ ↔
¬ m ≠ ∅) |
| 18 | 15, 17 | bitri 240 |
. . . . . . . . . 10
⊢ (m ∈ {∅} ↔ ¬ m ≠ ∅) |
| 19 | 18 | orbi1i 506 |
. . . . . . . . 9
⊢ ((m ∈ {∅} ∨ m ∈ ( Evenfin ∪ Oddfin )) ↔ (¬ m ≠ ∅ ∨ m ∈ ( Evenfin
∪ Oddfin ))) |
| 20 | | elun 3221 |
. . . . . . . . 9
⊢ (m ∈ ({∅} ∪ ( Evenfin ∪ Oddfin )) ↔ (m ∈ {∅} ∨ m ∈ ( Evenfin ∪ Oddfin ))) |
| 21 | | imor 401 |
. . . . . . . . 9
⊢ ((m ≠ ∅ →
m ∈ (
Evenfin ∪ Oddfin )) ↔ (¬ m ≠ ∅ ∨ m ∈ ( Evenfin
∪ Oddfin ))) |
| 22 | 19, 20, 21 | 3bitr4i 268 |
. . . . . . . 8
⊢ (m ∈ ({∅} ∪ ( Evenfin ∪ Oddfin )) ↔ (m ≠ ∅ →
m ∈ (
Evenfin ∪ Oddfin ))) |
| 23 | 22 | eqabi 2465 |
. . . . . . 7
⊢ ({∅} ∪ ( Evenfin ∪ Oddfin )) = {m ∣ (m ≠ ∅ →
m ∈ (
Evenfin ∪ Oddfin ))} |
| 24 | | snex 4112 |
. . . . . . . 8
⊢ {∅} ∈
V |
| 25 | | evenfinex 4504 |
. . . . . . . . 9
⊢ Evenfin ∈
V |
| 26 | | oddfinex 4505 |
. . . . . . . . 9
⊢ Oddfin ∈
V |
| 27 | 25, 26 | unex 4107 |
. . . . . . . 8
⊢ ( Evenfin ∪ Oddfin ) ∈
V |
| 28 | 24, 27 | unex 4107 |
. . . . . . 7
⊢ ({∅} ∪ ( Evenfin ∪ Oddfin )) ∈
V |
| 29 | 23, 28 | eqeltrri 2424 |
. . . . . 6
⊢ {m ∣ (m ≠ ∅ →
m ∈ (
Evenfin ∪ Oddfin ))} ∈ V |
| 30 | | neeq1 2525 |
. . . . . . 7
⊢ (m = 0c → (m ≠ ∅ ↔
0c ≠ ∅)) |
| 31 | | eleq1 2413 |
. . . . . . 7
⊢ (m = 0c → (m ∈ ( Evenfin ∪ Oddfin ) ↔ 0c ∈ ( Evenfin
∪ Oddfin ))) |
| 32 | 30, 31 | imbi12d 311 |
. . . . . 6
⊢ (m = 0c → ((m ≠ ∅ →
m ∈ (
Evenfin ∪ Oddfin )) ↔ (0c ≠
∅ → 0c ∈ ( Evenfin
∪ Oddfin )))) |
| 33 | | neeq1 2525 |
. . . . . . 7
⊢ (m = k →
(m ≠ ∅ ↔ k
≠ ∅)) |
| 34 | | eleq1 2413 |
. . . . . . 7
⊢ (m = k →
(m ∈ (
Evenfin ∪ Oddfin ) ↔ k ∈ ( Evenfin ∪ Oddfin ))) |
| 35 | 33, 34 | imbi12d 311 |
. . . . . 6
⊢ (m = k →
((m ≠ ∅ → m
∈ ( Evenfin ∪ Oddfin )) ↔ (k ≠ ∅ →
k ∈ (
Evenfin ∪ Oddfin )))) |
| 36 | | neeq1 2525 |
. . . . . . 7
⊢ (m = (k
+c 1c) → (m ≠ ∅ ↔
(k +c
1c) ≠ ∅)) |
| 37 | | eleq1 2413 |
. . . . . . 7
⊢ (m = (k
+c 1c) → (m ∈ ( Evenfin ∪ Oddfin ) ↔ (k +c 1c) ∈ ( Evenfin
∪ Oddfin ))) |
| 38 | 36, 37 | imbi12d 311 |
. . . . . 6
⊢ (m = (k
+c 1c) → ((m ≠ ∅ →
m ∈ (
Evenfin ∪ Oddfin )) ↔ ((k +c 1c) ≠
∅ → (k +c 1c) ∈ ( Evenfin
∪ Oddfin )))) |
| 39 | | neeq1 2525 |
. . . . . . 7
⊢ (m = n →
(m ≠ ∅ ↔ n
≠ ∅)) |
| 40 | | eleq1 2413 |
. . . . . . 7
⊢ (m = n →
(m ∈ (
Evenfin ∪ Oddfin ) ↔ n ∈ ( Evenfin ∪ Oddfin ))) |
| 41 | 39, 40 | imbi12d 311 |
. . . . . 6
⊢ (m = n →
((m ≠ ∅ → m
∈ ( Evenfin ∪ Oddfin )) ↔ (n ≠ ∅ →
n ∈ (
Evenfin ∪ Oddfin )))) |
| 42 | | ssun1 3427 |
. . . . . . . 8
⊢ Evenfin ⊆
( Evenfin ∪ Oddfin ) |
| 43 | | 0ceven 4506 |
. . . . . . . 8
⊢
0c ∈ Evenfin |
| 44 | 42, 43 | sselii 3271 |
. . . . . . 7
⊢
0c ∈ ( Evenfin ∪ Oddfin ) |
| 45 | 44 | a1i 10 |
. . . . . 6
⊢
(0c ≠ ∅ →
0c ∈ ( Evenfin ∪ Oddfin )) |
| 46 | | addcnnul 4454 |
. . . . . . . . . 10
⊢ ((k +c 1c) ≠
∅ → (k ≠ ∅ ∧ 1c ≠ ∅)) |
| 47 | 46 | simpld 445 |
. . . . . . . . 9
⊢ ((k +c 1c) ≠
∅ → k ≠ ∅) |
| 48 | | sucevenodd 4511 |
. . . . . . . . . . . 12
⊢ ((k ∈ Evenfin ∧
(k +c
1c) ≠ ∅) →
(k +c
1c) ∈ Oddfin ) |
| 49 | 48 | expcom 424 |
. . . . . . . . . . 11
⊢ ((k +c 1c) ≠
∅ → (k ∈ Evenfin → (k +c 1c) ∈ Oddfin
)) |
| 50 | | sucoddeven 4512 |
. . . . . . . . . . . 12
⊢ ((k ∈ Oddfin ∧
(k +c
1c) ≠ ∅) →
(k +c
1c) ∈ Evenfin ) |
| 51 | 50 | expcom 424 |
. . . . . . . . . . 11
⊢ ((k +c 1c) ≠
∅ → (k ∈ Oddfin → (k +c 1c) ∈ Evenfin
)) |
| 52 | 49, 51 | orim12d 811 |
. . . . . . . . . 10
⊢ ((k +c 1c) ≠
∅ → ((k ∈ Evenfin ∨
k ∈ Oddfin ) → ((k +c 1c) ∈ Oddfin
∨ (k
+c 1c) ∈
Evenfin ))) |
| 53 | | elun 3221 |
. . . . . . . . . 10
⊢ (k ∈ ( Evenfin ∪ Oddfin ) ↔ (k ∈ Evenfin ∨
k ∈ Oddfin )) |
| 54 | | elun 3221 |
. . . . . . . . . . 11
⊢ ((k +c 1c) ∈ ( Evenfin
∪ Oddfin ) ↔ ((k +c 1c) ∈ Evenfin
∨ (k
+c 1c) ∈
Oddfin )) |
| 55 | | orcom 376 |
. . . . . . . . . . 11
⊢ (((k +c 1c) ∈ Evenfin
∨ (k
+c 1c) ∈
Oddfin ) ↔ ((k +c 1c) ∈ Oddfin
∨ (k
+c 1c) ∈
Evenfin )) |
| 56 | 54, 55 | bitri 240 |
. . . . . . . . . 10
⊢ ((k +c 1c) ∈ ( Evenfin
∪ Oddfin ) ↔ ((k +c 1c) ∈ Oddfin
∨ (k
+c 1c) ∈
Evenfin )) |
| 57 | 52, 53, 56 | 3imtr4g 261 |
. . . . . . . . 9
⊢ ((k +c 1c) ≠
∅ → (k ∈ ( Evenfin ∪ Oddfin ) → (k +c 1c) ∈ ( Evenfin
∪ Oddfin ))) |
| 58 | 47, 57 | embantd 50 |
. . . . . . . 8
⊢ ((k +c 1c) ≠
∅ → ((k ≠ ∅ →
k ∈ (
Evenfin ∪ Oddfin )) → (k +c 1c) ∈ ( Evenfin
∪ Oddfin ))) |
| 59 | 58 | com12 27 |
. . . . . . 7
⊢ ((k ≠ ∅ →
k ∈ (
Evenfin ∪ Oddfin )) → ((k +c 1c) ≠
∅ → (k +c 1c) ∈ ( Evenfin
∪ Oddfin ))) |
| 60 | 59 | a1i 10 |
. . . . . 6
⊢ (k ∈ Nn → ((k ≠
∅ → k ∈ ( Evenfin ∪ Oddfin )) → ((k +c 1c) ≠
∅ → (k +c 1c) ∈ ( Evenfin
∪ Oddfin )))) |
| 61 | 29, 32, 35, 38, 41, 45, 60 | finds 4412 |
. . . . 5
⊢ (n ∈ Nn → (n ≠
∅ → n ∈ ( Evenfin ∪ Oddfin ))) |
| 62 | 61 | imp 418 |
. . . 4
⊢ ((n ∈ Nn ∧ n ≠ ∅) →
n ∈ (
Evenfin ∪ Oddfin )) |
| 63 | 13, 62 | sylbi 187 |
. . 3
⊢ (n ∈ ( Nn ∖ {∅}) → n
∈ ( Evenfin ∪ Oddfin )) |
| 64 | 63 | ssriv 3278 |
. 2
⊢ ( Nn ∖ {∅}) ⊆ ( Evenfin ∪ Oddfin ) |
| 65 | 12, 64 | eqssi 3289 |
1
⊢ ( Evenfin ∪ Oddfin ) = ( Nn
∖ {∅}) |