| Step | Hyp | Ref
 | Expression | 
| 1 |   | evennn 4507 | 
. . . . . 6
⊢ (x ∈ Evenfin → x ∈ Nn ) | 
| 2 |   | evennnul 4509 | 
. . . . . 6
⊢ (x ∈ Evenfin → x ≠ ∅) | 
| 3 |   | eldifsn 3840 | 
. . . . . 6
⊢ (x ∈ ( Nn ∖ {∅}) ↔ (x
∈ Nn ∧ x ≠ ∅)) | 
| 4 | 1, 2, 3 | sylanbrc 645 | 
. . . . 5
⊢ (x ∈ Evenfin → x ∈ ( Nn ∖ {∅})) | 
| 5 | 4 | ssriv 3278 | 
. . . 4
⊢  Evenfin ⊆
( Nn ∖ {∅}) | 
| 6 |   | oddnn 4508 | 
. . . . . 6
⊢ (x ∈ Oddfin → x ∈ Nn ) | 
| 7 |   | oddnnul 4510 | 
. . . . . 6
⊢ (x ∈ Oddfin → x ≠ ∅) | 
| 8 | 6, 7, 3 | sylanbrc 645 | 
. . . . 5
⊢ (x ∈ Oddfin → x ∈ ( Nn ∖ {∅})) | 
| 9 | 8 | ssriv 3278 | 
. . . 4
⊢  Oddfin ⊆ (
Nn ∖ {∅}) | 
| 10 | 5, 9 | pm3.2i 441 | 
. . 3
⊢ ( Evenfin ⊆
( Nn ∖ {∅}) ∧ Oddfin ⊆ (
Nn ∖ {∅})) | 
| 11 |   | unss 3438 | 
. . 3
⊢ (( Evenfin ⊆
( Nn ∖ {∅}) ∧ Oddfin ⊆ (
Nn ∖ {∅})) ↔ ( Evenfin ∪ Oddfin ) ⊆
( Nn ∖ {∅})) | 
| 12 | 10, 11 | mpbi 199 | 
. 2
⊢ ( Evenfin ∪ Oddfin ) ⊆
( Nn ∖ {∅}) | 
| 13 |   | eldifsn 3840 | 
. . . 4
⊢ (n ∈ ( Nn ∖ {∅}) ↔ (n
∈ Nn ∧ n ≠ ∅)) | 
| 14 |   | vex 2863 | 
. . . . . . . . . . . 12
⊢ m ∈
V | 
| 15 | 14 | elsnc 3757 | 
. . . . . . . . . . 11
⊢ (m ∈ {∅} ↔ m =
∅) | 
| 16 |   | df-ne 2519 | 
. . . . . . . . . . . 12
⊢ (m ≠ ∅ ↔
¬ m = ∅) | 
| 17 | 16 | con2bii 322 | 
. . . . . . . . . . 11
⊢ (m = ∅ ↔
¬ m ≠ ∅) | 
| 18 | 15, 17 | bitri 240 | 
. . . . . . . . . 10
⊢ (m ∈ {∅} ↔ ¬ m ≠ ∅) | 
| 19 | 18 | orbi1i 506 | 
. . . . . . . . 9
⊢ ((m ∈ {∅}  ∨ m ∈ ( Evenfin ∪ Oddfin )) ↔ (¬ m ≠ ∅  ∨ m ∈ ( Evenfin
∪ Oddfin ))) | 
| 20 |   | elun 3221 | 
. . . . . . . . 9
⊢ (m ∈ ({∅} ∪ ( Evenfin ∪ Oddfin )) ↔ (m ∈ {∅}  ∨ m ∈ ( Evenfin ∪ Oddfin ))) | 
| 21 |   | imor 401 | 
. . . . . . . . 9
⊢ ((m ≠ ∅ →
m ∈ (
Evenfin ∪ Oddfin )) ↔ (¬ m ≠ ∅  ∨ m ∈ ( Evenfin
∪ Oddfin ))) | 
| 22 | 19, 20, 21 | 3bitr4i 268 | 
. . . . . . . 8
⊢ (m ∈ ({∅} ∪ ( Evenfin ∪ Oddfin )) ↔ (m ≠ ∅ →
m ∈ (
Evenfin ∪ Oddfin ))) | 
| 23 | 22 | eqabi 2465 | 
. . . . . . 7
⊢ ({∅} ∪ ( Evenfin ∪ Oddfin )) = {m ∣ (m ≠ ∅ →
m ∈ (
Evenfin ∪ Oddfin ))} | 
| 24 |   | snex 4112 | 
. . . . . . . 8
⊢ {∅} ∈
V | 
| 25 |   | evenfinex 4504 | 
. . . . . . . . 9
⊢  Evenfin ∈
V | 
| 26 |   | oddfinex 4505 | 
. . . . . . . . 9
⊢  Oddfin ∈
V | 
| 27 | 25, 26 | unex 4107 | 
. . . . . . . 8
⊢ ( Evenfin ∪ Oddfin ) ∈
V | 
| 28 | 24, 27 | unex 4107 | 
. . . . . . 7
⊢ ({∅} ∪ ( Evenfin ∪ Oddfin )) ∈
V | 
| 29 | 23, 28 | eqeltrri 2424 | 
. . . . . 6
⊢ {m ∣ (m ≠ ∅ →
m ∈ (
Evenfin ∪ Oddfin ))} ∈ V | 
| 30 |   | neeq1 2525 | 
. . . . . . 7
⊢ (m = 0c → (m ≠ ∅ ↔
0c ≠ ∅)) | 
| 31 |   | eleq1 2413 | 
. . . . . . 7
⊢ (m = 0c → (m ∈ ( Evenfin ∪ Oddfin ) ↔ 0c ∈ ( Evenfin
∪ Oddfin ))) | 
| 32 | 30, 31 | imbi12d 311 | 
. . . . . 6
⊢ (m = 0c → ((m ≠ ∅ →
m ∈ (
Evenfin ∪ Oddfin )) ↔ (0c ≠
∅ → 0c ∈ ( Evenfin
∪ Oddfin )))) | 
| 33 |   | neeq1 2525 | 
. . . . . . 7
⊢ (m = k →
(m ≠ ∅ ↔ k
≠ ∅)) | 
| 34 |   | eleq1 2413 | 
. . . . . . 7
⊢ (m = k →
(m ∈ (
Evenfin ∪ Oddfin ) ↔ k ∈ ( Evenfin ∪ Oddfin ))) | 
| 35 | 33, 34 | imbi12d 311 | 
. . . . . 6
⊢ (m = k →
((m ≠ ∅ → m
∈ ( Evenfin ∪ Oddfin )) ↔ (k ≠ ∅ →
k ∈ (
Evenfin ∪ Oddfin )))) | 
| 36 |   | neeq1 2525 | 
. . . . . . 7
⊢ (m = (k
+c 1c) → (m ≠ ∅ ↔
(k +c
1c) ≠ ∅)) | 
| 37 |   | eleq1 2413 | 
. . . . . . 7
⊢ (m = (k
+c 1c) → (m ∈ ( Evenfin ∪ Oddfin ) ↔ (k +c 1c) ∈ ( Evenfin
∪ Oddfin ))) | 
| 38 | 36, 37 | imbi12d 311 | 
. . . . . 6
⊢ (m = (k
+c 1c) → ((m ≠ ∅ →
m ∈ (
Evenfin ∪ Oddfin )) ↔ ((k +c 1c) ≠
∅ → (k +c 1c) ∈ ( Evenfin
∪ Oddfin )))) | 
| 39 |   | neeq1 2525 | 
. . . . . . 7
⊢ (m = n →
(m ≠ ∅ ↔ n
≠ ∅)) | 
| 40 |   | eleq1 2413 | 
. . . . . . 7
⊢ (m = n →
(m ∈ (
Evenfin ∪ Oddfin ) ↔ n ∈ ( Evenfin ∪ Oddfin ))) | 
| 41 | 39, 40 | imbi12d 311 | 
. . . . . 6
⊢ (m = n →
((m ≠ ∅ → m
∈ ( Evenfin ∪ Oddfin )) ↔ (n ≠ ∅ →
n ∈ (
Evenfin ∪ Oddfin )))) | 
| 42 |   | ssun1 3427 | 
. . . . . . . 8
⊢  Evenfin ⊆
( Evenfin ∪ Oddfin ) | 
| 43 |   | 0ceven 4506 | 
. . . . . . . 8
⊢
0c ∈ Evenfin | 
| 44 | 42, 43 | sselii 3271 | 
. . . . . . 7
⊢
0c ∈ ( Evenfin ∪ Oddfin ) | 
| 45 | 44 | a1i 10 | 
. . . . . 6
⊢
(0c ≠ ∅ →
0c ∈ ( Evenfin ∪ Oddfin )) | 
| 46 |   | addcnnul 4454 | 
. . . . . . . . . 10
⊢ ((k +c 1c) ≠
∅ → (k ≠ ∅ ∧ 1c ≠ ∅)) | 
| 47 | 46 | simpld 445 | 
. . . . . . . . 9
⊢ ((k +c 1c) ≠
∅ → k ≠ ∅) | 
| 48 |   | sucevenodd 4511 | 
. . . . . . . . . . . 12
⊢ ((k ∈ Evenfin ∧
(k +c
1c) ≠ ∅) →
(k +c
1c) ∈ Oddfin ) | 
| 49 | 48 | expcom 424 | 
. . . . . . . . . . 11
⊢ ((k +c 1c) ≠
∅ → (k ∈ Evenfin → (k +c 1c) ∈ Oddfin
)) | 
| 50 |   | sucoddeven 4512 | 
. . . . . . . . . . . 12
⊢ ((k ∈ Oddfin ∧
(k +c
1c) ≠ ∅) →
(k +c
1c) ∈ Evenfin ) | 
| 51 | 50 | expcom 424 | 
. . . . . . . . . . 11
⊢ ((k +c 1c) ≠
∅ → (k ∈ Oddfin → (k +c 1c) ∈ Evenfin
)) | 
| 52 | 49, 51 | orim12d 811 | 
. . . . . . . . . 10
⊢ ((k +c 1c) ≠
∅ → ((k ∈ Evenfin  ∨
k ∈ Oddfin ) → ((k +c 1c) ∈ Oddfin
 ∨ (k
+c 1c) ∈
Evenfin ))) | 
| 53 |   | elun 3221 | 
. . . . . . . . . 10
⊢ (k ∈ ( Evenfin ∪ Oddfin ) ↔ (k ∈ Evenfin  ∨
k ∈ Oddfin )) | 
| 54 |   | elun 3221 | 
. . . . . . . . . . 11
⊢ ((k +c 1c) ∈ ( Evenfin
∪ Oddfin ) ↔ ((k +c 1c) ∈ Evenfin
 ∨ (k
+c 1c) ∈
Oddfin )) | 
| 55 |   | orcom 376 | 
. . . . . . . . . . 11
⊢ (((k +c 1c) ∈ Evenfin
 ∨ (k
+c 1c) ∈
Oddfin ) ↔ ((k +c 1c) ∈ Oddfin
 ∨ (k
+c 1c) ∈
Evenfin )) | 
| 56 | 54, 55 | bitri 240 | 
. . . . . . . . . 10
⊢ ((k +c 1c) ∈ ( Evenfin
∪ Oddfin ) ↔ ((k +c 1c) ∈ Oddfin
 ∨ (k
+c 1c) ∈
Evenfin )) | 
| 57 | 52, 53, 56 | 3imtr4g 261 | 
. . . . . . . . 9
⊢ ((k +c 1c) ≠
∅ → (k ∈ ( Evenfin ∪ Oddfin ) → (k +c 1c) ∈ ( Evenfin
∪ Oddfin ))) | 
| 58 | 47, 57 | embantd 50 | 
. . . . . . . 8
⊢ ((k +c 1c) ≠
∅ → ((k ≠ ∅ →
k ∈ (
Evenfin ∪ Oddfin )) → (k +c 1c) ∈ ( Evenfin
∪ Oddfin ))) | 
| 59 | 58 | com12 27 | 
. . . . . . 7
⊢ ((k ≠ ∅ →
k ∈ (
Evenfin ∪ Oddfin )) → ((k +c 1c) ≠
∅ → (k +c 1c) ∈ ( Evenfin
∪ Oddfin ))) | 
| 60 | 59 | a1i 10 | 
. . . . . 6
⊢ (k ∈ Nn → ((k ≠
∅ → k ∈ ( Evenfin ∪ Oddfin )) → ((k +c 1c) ≠
∅ → (k +c 1c) ∈ ( Evenfin
∪ Oddfin )))) | 
| 61 | 29, 32, 35, 38, 41, 45, 60 | finds 4412 | 
. . . . 5
⊢ (n ∈ Nn → (n ≠
∅ → n ∈ ( Evenfin ∪ Oddfin ))) | 
| 62 | 61 | imp 418 | 
. . . 4
⊢ ((n ∈ Nn ∧ n ≠ ∅) →
n ∈ (
Evenfin ∪ Oddfin )) | 
| 63 | 13, 62 | sylbi 187 | 
. . 3
⊢ (n ∈ ( Nn ∖ {∅}) → n
∈ ( Evenfin ∪ Oddfin )) | 
| 64 | 63 | ssriv 3278 | 
. 2
⊢ ( Nn ∖ {∅}) ⊆ ( Evenfin ∪ Oddfin ) | 
| 65 | 12, 64 | eqssi 3289 | 
1
⊢ ( Evenfin ∪ Oddfin ) = ( Nn
∖ {∅}) |