New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpan2 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpan2.1 | ⊢ ψ |
mpan2.2 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
mpan2 | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan2.1 | . . 3 ⊢ ψ | |
2 | 1 | a1i 10 | . 2 ⊢ (φ → ψ) |
3 | mpan2.2 | . 2 ⊢ ((φ ∧ ψ) → χ) | |
4 | 2, 3 | mpdan 649 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: mpanr12 666 mp3an23 1269 equs4 1959 eueq2 3011 sbcgf 3110 csbconstgf 3150 sbcnestg 3186 csbnestg 3187 csbnest1g 3189 eqpw1 4163 imakexg 4300 imagekexg 4312 setswith 4322 eqpw1uni 4331 sspw1 4336 finds 4412 nnc0suc 4413 elsuci 4415 lefinaddc 4451 nulge 4457 ltfinp1 4463 ncfinsn 4477 tfinltfinlem1 4501 sucevenodd 4511 sucoddeven 4512 oddtfin 4519 sfintfin 4533 vfinspnn 4542 1cvsfin 4543 tncveqnc1fin 4545 vfintle 4547 vfin1cltv 4548 vfinncvntnn 4549 vfinspsslem1 4551 vfinncsp 4555 vinf 4556 epelc 4766 xpss1 4857 br1st 4859 br2nd 4860 brswap2 4861 ssrnres 5060 rnexg 5105 resexg 5117 funcnvres 5166 fnresin1 5198 fnresin2 5199 fvopab3g 5387 fvopab4 5390 fsn 5433 fsn2 5435 f1elima 5475 mpteq1 5659 fvmpt 5701 fvmptnf 5724 fixexg 5789 ins3exg 5797 imageexg 5801 pprodexg 5838 clos1induct 5881 ecexg 5950 ecelqsg 5980 enmap2lem3 6066 enpw 6088 ncaddccl 6145 peano2nc 6146 ncdisjeq 6149 pw1eltc 6163 ovcelem1 6172 ce0nnul 6178 ce0nn 6181 ce0nulnc 6185 ce0 6191 lecidg 6197 lecncvg 6200 leconnnc 6219 ncfin 6248 nclenn 6250 ncslesuc 6268 nmembers1 6272 spaccl 6287 nchoicelem3 6292 nchoicelem9 6298 nchoicelem19 6308 frecxpg 6316 fnfreclem1 6318 fnfreclem3 6320 scancan 6332 |
Copyright terms: Public domain | W3C validator |