New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eueq | GIF version |
Description: Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
eueq | ⊢ (A ∈ V ↔ ∃!x x = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 2372 | . . . 4 ⊢ ((x = A ∧ y = A) → x = y) | |
2 | 1 | gen2 1547 | . . 3 ⊢ ∀x∀y((x = A ∧ y = A) → x = y) |
3 | 2 | biantru 491 | . 2 ⊢ (∃x x = A ↔ (∃x x = A ∧ ∀x∀y((x = A ∧ y = A) → x = y))) |
4 | isset 2864 | . 2 ⊢ (A ∈ V ↔ ∃x x = A) | |
5 | eqeq1 2359 | . . 3 ⊢ (x = y → (x = A ↔ y = A)) | |
6 | 5 | eu4 2243 | . 2 ⊢ (∃!x x = A ↔ (∃x x = A ∧ ∀x∀y((x = A ∧ y = A) → x = y))) |
7 | 3, 4, 6 | 3bitr4i 268 | 1 ⊢ (A ∈ V ↔ ∃!x x = A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: eueq1 3010 moeq 3013 fnopab2g 5207 |
Copyright terms: Public domain | W3C validator |