New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > moeq | GIF version |
Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.) |
Ref | Expression |
---|---|
moeq | ⊢ ∃*x x = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 2864 | . . . 4 ⊢ (A ∈ V ↔ ∃x x = A) | |
2 | eueq 3009 | . . . 4 ⊢ (A ∈ V ↔ ∃!x x = A) | |
3 | 1, 2 | bitr3i 242 | . . 3 ⊢ (∃x x = A ↔ ∃!x x = A) |
4 | 3 | biimpi 186 | . 2 ⊢ (∃x x = A → ∃!x x = A) |
5 | df-mo 2209 | . 2 ⊢ (∃*x x = A ↔ (∃x x = A → ∃!x x = A)) | |
6 | 4, 5 | mpbir 200 | 1 ⊢ ∃*x x = A |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 ∃*wmo 2205 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: mosub 3015 euxfr2 3022 reueq 3034 funopabeq 5141 funsn 5148 fvopab4g 5389 ov2ag 5599 ov3 5600 ov6g 5601 ovmpt4g 5711 ovmpt2x 5713 fnce 6177 |
Copyright terms: Public domain | W3C validator |