New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biantru | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biantru.1 | ⊢ φ |
Ref | Expression |
---|---|
biantru | ⊢ (ψ ↔ (ψ ∧ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 | . 2 ⊢ φ | |
2 | iba 489 | . 2 ⊢ (φ → (ψ ↔ (ψ ∧ φ))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (ψ ↔ (ψ ∧ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: pm4.71 611 mpbiran2 885 isset 2864 rexcom4b 2881 eueq 3009 nsspssun 3489 disjpss 3602 elvvk 4208 eqtfinrelk 4487 phiall 4619 dfid3 4769 resopab 5000 xpcan2 5059 funfn 5137 dffn2 5225 dffn3 5230 dffn4 5276 f1orn 5297 fsn 5433 ce0nnul 6178 ce0nulnc 6185 dmsnfn 6328 |
Copyright terms: Public domain | W3C validator |