NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  biantru GIF version

Theorem biantru 491
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
biantru.1 φ
Assertion
Ref Expression
biantru (ψ ↔ (ψ φ))

Proof of Theorem biantru
StepHypRef Expression
1 biantru.1 . 2 φ
2 iba 489 . 2 (φ → (ψ ↔ (ψ φ)))
31, 2ax-mp 5 1 (ψ ↔ (ψ φ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  pm4.71  611  mpbiran2  885  isset  2864  rexcom4b  2881  eueq  3009  nsspssun  3489  disjpss  3602  elvvk  4208  eqtfinrelk  4487  phiall  4619  dfid3  4769  resopab  5000  xpcan2  5059  funfn  5137  dffn2  5225  dffn3  5230  dffn4  5276  f1orn  5297  fsn  5433  ce0nnul  6178  ce0nulnc  6185  dmsnfn  6328
  Copyright terms: Public domain W3C validator