New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > euimmo | GIF version |
Description: Uniqueness implies "at most one" through implication. (Contributed by NM, 22-Apr-1995.) |
Ref | Expression |
---|---|
euimmo | ⊢ (∀x(φ → ψ) → (∃!xψ → ∃*xφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2244 | . 2 ⊢ (∃!xψ → ∃*xψ) | |
2 | moim 2250 | . 2 ⊢ (∀x(φ → ψ) → (∃*xψ → ∃*xφ)) | |
3 | 1, 2 | syl5 28 | 1 ⊢ (∀x(φ → ψ) → (∃!xψ → ∃*xφ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃!weu 2204 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: euim 2254 2eumo 2277 moeq3 3014 reuss2 3536 |
Copyright terms: Public domain | W3C validator |