| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > morimv | GIF version | ||
| Description: Move antecedent outside of "at most one." (Contributed by NM, 28-Jul-1995.) |
| Ref | Expression |
|---|---|
| morimv | ⊢ (∃*x(φ → ψ) → (φ → ∃*xψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . . . . . . 7 ⊢ (ψ → (φ → ψ)) | |
| 2 | 1 | a1i 10 | . . . . . 6 ⊢ (φ → (ψ → (φ → ψ))) |
| 3 | 2 | imim1d 69 | . . . . 5 ⊢ (φ → (((φ → ψ) → x = y) → (ψ → x = y))) |
| 4 | 3 | alimdv 1621 | . . . 4 ⊢ (φ → (∀x((φ → ψ) → x = y) → ∀x(ψ → x = y))) |
| 5 | 4 | eximdv 1622 | . . 3 ⊢ (φ → (∃y∀x((φ → ψ) → x = y) → ∃y∀x(ψ → x = y))) |
| 6 | nfv 1619 | . . . 4 ⊢ Ⅎy(φ → ψ) | |
| 7 | 6 | mo2 2233 | . . 3 ⊢ (∃*x(φ → ψ) ↔ ∃y∀x((φ → ψ) → x = y)) |
| 8 | nfv 1619 | . . . 4 ⊢ Ⅎyψ | |
| 9 | 8 | mo2 2233 | . . 3 ⊢ (∃*xψ ↔ ∃y∀x(ψ → x = y)) |
| 10 | 5, 7, 9 | 3imtr4g 261 | . 2 ⊢ (φ → (∃*x(φ → ψ) → ∃*xψ)) |
| 11 | 10 | com12 27 | 1 ⊢ (∃*x(φ → ψ) → (φ → ∃*xψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 = wceq 1642 ∃*wmo 2205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |