New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eu3 | GIF version |
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) |
Ref | Expression |
---|---|
eu3.1 | ⊢ Ⅎyφ |
Ref | Expression |
---|---|
eu3 | ⊢ (∃!xφ ↔ (∃xφ ∧ ∃y∀x(φ → x = y))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu3.1 | . . 3 ⊢ Ⅎyφ | |
2 | 1 | eu2 2229 | . 2 ⊢ (∃!xφ ↔ (∃xφ ∧ ∀x∀y((φ ∧ [y / x]φ) → x = y))) |
3 | 1 | mo 2226 | . . 3 ⊢ (∃y∀x(φ → x = y) ↔ ∀x∀y((φ ∧ [y / x]φ) → x = y)) |
4 | 3 | anbi2i 675 | . 2 ⊢ ((∃xφ ∧ ∃y∀x(φ → x = y)) ↔ (∃xφ ∧ ∀x∀y((φ ∧ [y / x]φ) → x = y))) |
5 | 2, 4 | bitr4i 243 | 1 ⊢ (∃!xφ ↔ (∃xφ ∧ ∃y∀x(φ → x = y))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 [wsb 1648 ∃!weu 2204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 |
This theorem is referenced by: mo2 2233 eu5 2242 2eu4 2287 eqeu 3008 reu3 3027 |
Copyright terms: Public domain | W3C validator |