Step | Hyp | Ref
| Expression |
1 | | dfss2 3263 |
. . . . . . . . 9
⊢ (x ⊆ {A} ↔ ∀y(y ∈ x → y ∈ {A})) |
2 | | elsn 3749 |
. . . . . . . . . . 11
⊢ (y ∈ {A} ↔ y =
A) |
3 | 2 | imbi2i 303 |
. . . . . . . . . 10
⊢ ((y ∈ x → y ∈ {A}) ↔
(y ∈
x → y = A)) |
4 | 3 | albii 1566 |
. . . . . . . . 9
⊢ (∀y(y ∈ x → y ∈ {A}) ↔
∀y(y ∈ x →
y = A)) |
5 | 1, 4 | bitri 240 |
. . . . . . . 8
⊢ (x ⊆ {A} ↔ ∀y(y ∈ x → y =
A)) |
6 | | neq0 3561 |
. . . . . . . . . 10
⊢ (¬ x = ∅ ↔
∃y
y ∈
x) |
7 | | exintr 1614 |
. . . . . . . . . 10
⊢ (∀y(y ∈ x → y =
A) → (∃y y ∈ x → ∃y(y ∈ x ∧ y = A))) |
8 | 6, 7 | syl5bi 208 |
. . . . . . . . 9
⊢ (∀y(y ∈ x → y =
A) → (¬ x = ∅ →
∃y(y ∈ x ∧ y = A))) |
9 | | df-clel 2349 |
. . . . . . . . . . 11
⊢ (A ∈ x ↔ ∃y(y = A ∧ y ∈ x)) |
10 | | exancom 1586 |
. . . . . . . . . . 11
⊢ (∃y(y = A ∧ y ∈ x) ↔
∃y(y ∈ x ∧ y = A)) |
11 | 9, 10 | bitr2i 241 |
. . . . . . . . . 10
⊢ (∃y(y ∈ x ∧ y = A) ↔
A ∈
x) |
12 | | snssi 3853 |
. . . . . . . . . 10
⊢ (A ∈ x → {A}
⊆ x) |
13 | 11, 12 | sylbi 187 |
. . . . . . . . 9
⊢ (∃y(y ∈ x ∧ y = A) →
{A} ⊆
x) |
14 | 8, 13 | syl6 29 |
. . . . . . . 8
⊢ (∀y(y ∈ x → y =
A) → (¬ x = ∅ →
{A} ⊆
x)) |
15 | 5, 14 | sylbi 187 |
. . . . . . 7
⊢ (x ⊆ {A} → (¬ x = ∅ →
{A} ⊆
x)) |
16 | 15 | anc2li 540 |
. . . . . 6
⊢ (x ⊆ {A} → (¬ x = ∅ →
(x ⊆
{A} ∧
{A} ⊆
x))) |
17 | | eqss 3288 |
. . . . . 6
⊢ (x = {A} ↔
(x ⊆
{A} ∧
{A} ⊆
x)) |
18 | 16, 17 | syl6ibr 218 |
. . . . 5
⊢ (x ⊆ {A} → (¬ x = ∅ →
x = {A})) |
19 | 18 | orrd 367 |
. . . 4
⊢ (x ⊆ {A} → (x =
∅ ∨
x = {A})) |
20 | | 0ss 3580 |
. . . . . 6
⊢ ∅ ⊆ {A} |
21 | | sseq1 3293 |
. . . . . 6
⊢ (x = ∅ →
(x ⊆
{A} ↔ ∅ ⊆ {A})) |
22 | 20, 21 | mpbiri 224 |
. . . . 5
⊢ (x = ∅ →
x ⊆
{A}) |
23 | | eqimss 3324 |
. . . . 5
⊢ (x = {A} →
x ⊆
{A}) |
24 | 22, 23 | jaoi 368 |
. . . 4
⊢ ((x = ∅ ∨ x = {A}) → x
⊆ {A}) |
25 | 19, 24 | impbii 180 |
. . 3
⊢ (x ⊆ {A} ↔ (x =
∅ ∨
x = {A})) |
26 | 25 | abbii 2466 |
. 2
⊢ {x ∣ x ⊆ {A}} = {x ∣ (x = ∅ ∨ x = {A})} |
27 | | df-pw 3725 |
. 2
⊢ ℘{A} =
{x ∣
x ⊆
{A}} |
28 | | dfpr2 3750 |
. 2
⊢ {∅, {A}} =
{x ∣
(x = ∅
∨ x =
{A})} |
29 | 26, 27, 28 | 3eqtr4i 2383 |
1
⊢ ℘{A} = {∅, {A}} |