| Step | Hyp | Ref
 | Expression | 
| 1 |   | dfss2 3263 | 
. . . . . . . . 9
⊢ (x ⊆ {∅} ↔ ∀y(y ∈ x → y ∈ {∅})) | 
| 2 |   | elsn 3749 | 
. . . . . . . . . . 11
⊢ (y ∈ {∅} ↔ y =
∅) | 
| 3 | 2 | imbi2i 303 | 
. . . . . . . . . 10
⊢ ((y ∈ x → y ∈ {∅}) ↔
(y ∈
x → y = ∅)) | 
| 4 | 3 | albii 1566 | 
. . . . . . . . 9
⊢ (∀y(y ∈ x → y ∈ {∅}) ↔
∀y(y ∈ x →
y = ∅)) | 
| 5 | 1, 4 | bitri 240 | 
. . . . . . . 8
⊢ (x ⊆ {∅} ↔ ∀y(y ∈ x → y =
∅)) | 
| 6 |   | neq0 3561 | 
. . . . . . . . . 10
⊢ (¬ x = ∅ ↔
∃y
y ∈
x) | 
| 7 |   | exintr 1614 | 
. . . . . . . . . 10
⊢ (∀y(y ∈ x → y =
∅) → (∃y y ∈ x → ∃y(y ∈ x ∧ y = ∅))) | 
| 8 | 6, 7 | syl5bi 208 | 
. . . . . . . . 9
⊢ (∀y(y ∈ x → y =
∅) → (¬ x = ∅ →
∃y(y ∈ x ∧ y = ∅))) | 
| 9 |   | exancom 1586 | 
. . . . . . . . . . 11
⊢ (∃y(y ∈ x ∧ y = ∅) ↔
∃y(y = ∅ ∧ y ∈ x)) | 
| 10 |   | df-clel 2349 | 
. . . . . . . . . . 11
⊢ (∅ ∈ x ↔ ∃y(y = ∅ ∧ y ∈ x)) | 
| 11 | 9, 10 | bitr4i 243 | 
. . . . . . . . . 10
⊢ (∃y(y ∈ x ∧ y = ∅) ↔
∅ ∈
x) | 
| 12 |   | snssi 3853 | 
. . . . . . . . . 10
⊢ (∅ ∈ x → {∅}
⊆ x) | 
| 13 | 11, 12 | sylbi 187 | 
. . . . . . . . 9
⊢ (∃y(y ∈ x ∧ y = ∅) →
{∅} ⊆
x) | 
| 14 | 8, 13 | syl6 29 | 
. . . . . . . 8
⊢ (∀y(y ∈ x → y =
∅) → (¬ x = ∅ →
{∅} ⊆
x)) | 
| 15 | 5, 14 | sylbi 187 | 
. . . . . . 7
⊢ (x ⊆ {∅} → (¬ x = ∅ →
{∅} ⊆
x)) | 
| 16 | 15 | anc2li 540 | 
. . . . . 6
⊢ (x ⊆ {∅} → (¬ x = ∅ →
(x ⊆
{∅} ∧
{∅} ⊆
x))) | 
| 17 |   | eqss 3288 | 
. . . . . 6
⊢ (x = {∅} ↔
(x ⊆
{∅} ∧
{∅} ⊆
x)) | 
| 18 | 16, 17 | syl6ibr 218 | 
. . . . 5
⊢ (x ⊆ {∅} → (¬ x = ∅ →
x = {∅})) | 
| 19 | 18 | orrd 367 | 
. . . 4
⊢ (x ⊆ {∅} → (x =
∅  ∨
x = {∅})) | 
| 20 |   | 0ss 3580 | 
. . . . . 6
⊢ ∅ ⊆ {∅} | 
| 21 |   | sseq1 3293 | 
. . . . . 6
⊢ (x = ∅ →
(x ⊆
{∅} ↔ ∅ ⊆ {∅})) | 
| 22 | 20, 21 | mpbiri 224 | 
. . . . 5
⊢ (x = ∅ →
x ⊆
{∅}) | 
| 23 |   | eqimss 3324 | 
. . . . 5
⊢ (x = {∅} →
x ⊆
{∅}) | 
| 24 | 22, 23 | jaoi 368 | 
. . . 4
⊢ ((x = ∅  ∨ x = {∅}) → x
⊆ {∅}) | 
| 25 | 19, 24 | impbii 180 | 
. . 3
⊢ (x ⊆ {∅} ↔ (x =
∅  ∨
x = {∅})) | 
| 26 | 25 | abbii 2466 | 
. 2
⊢ {x ∣ x ⊆ {∅}} = {x ∣ (x = ∅  ∨ x = {∅})} | 
| 27 |   | df-pw 3725 | 
. 2
⊢ ℘{∅} =
{x ∣
x ⊆
{∅}} | 
| 28 |   | dfpr2 3750 | 
. 2
⊢ {∅, {∅}} =
{x ∣
(x = ∅
 ∨ x =
{∅})} | 
| 29 | 26, 27, 28 | 3eqtr4i 2383 | 
1
⊢ ℘{∅} = {∅, {∅}} |