| Step | Hyp | Ref
| Expression |
| 1 | | r2ex 2653 |
. . . . 5
⊢ (∃x ∈ a ∃y ∈ b x ⊆ y ↔ ∃x∃y((x ∈ a ∧ y ∈ b) ∧ x ⊆ y)) |
| 2 | | 19.41vv 1902 |
. . . . . . 7
⊢ (∃t∃u(((t S a ∧ u S b) ∧ (t = {x} ∧ u = {y})) ∧ x ⊆ y) ↔ (∃t∃u((t S a ∧ u S b) ∧ (t = {x} ∧ u = {y})) ∧ x ⊆ y)) |
| 3 | | anass 630 |
. . . . . . . 8
⊢ ((((t S a ∧ u S b) ∧ (t = {x} ∧ u = {y})) ∧ x ⊆ y) ↔ ((t S a ∧ u S b) ∧ ((t = {x} ∧ u = {y}) ∧ x ⊆ y))) |
| 4 | 3 | 2exbii 1583 |
. . . . . . 7
⊢ (∃t∃u(((t S a ∧ u S b) ∧ (t = {x} ∧ u = {y})) ∧ x ⊆ y) ↔ ∃t∃u((t S a ∧ u S b) ∧ ((t = {x} ∧ u = {y}) ∧ x ⊆ y))) |
| 5 | | ancom 437 |
. . . . . . . . . . 11
⊢ (((t S a ∧ u S b) ∧ (t = {x} ∧ u = {y})) ↔ ((t
= {x} ∧
u = {y}) ∧ (t S a ∧ u S b))) |
| 6 | | df-3an 936 |
. . . . . . . . . . 11
⊢ ((t = {x} ∧ u = {y} ∧ (t S a ∧ u S b)) ↔ ((t =
{x} ∧
u = {y}) ∧ (t S a ∧ u S b))) |
| 7 | 5, 6 | bitr4i 243 |
. . . . . . . . . 10
⊢ (((t S a ∧ u S b) ∧ (t = {x} ∧ u = {y})) ↔ (t =
{x} ∧
u = {y}
∧ (t S a ∧ u S b))) |
| 8 | 7 | 2exbii 1583 |
. . . . . . . . 9
⊢ (∃t∃u((t S a ∧ u S b) ∧ (t = {x} ∧ u = {y})) ↔ ∃t∃u(t = {x} ∧ u = {y} ∧ (t S a ∧ u S b))) |
| 9 | | snex 4112 |
. . . . . . . . . 10
⊢ {x} ∈
V |
| 10 | | snex 4112 |
. . . . . . . . . 10
⊢ {y} ∈
V |
| 11 | | breq1 4643 |
. . . . . . . . . . 11
⊢ (t = {x} →
(t S a ↔ {x} S a)) |
| 12 | 11 | anbi1d 685 |
. . . . . . . . . 10
⊢ (t = {x} →
((t S a ∧ u S b) ↔ ({x} S a ∧ u S b))) |
| 13 | | breq1 4643 |
. . . . . . . . . . 11
⊢ (u = {y} →
(u S b ↔ {y} S b)) |
| 14 | 13 | anbi2d 684 |
. . . . . . . . . 10
⊢ (u = {y} →
(({x} S
a ∧
u S b) ↔ ({x} S a ∧ {y} S b))) |
| 15 | 9, 10, 12, 14 | ceqsex2v 2897 |
. . . . . . . . 9
⊢ (∃t∃u(t = {x} ∧ u = {y} ∧ (t S a ∧ u S b)) ↔ ({x} S a ∧ {y} S b)) |
| 16 | | vex 2863 |
. . . . . . . . . . 11
⊢ x ∈
V |
| 17 | | vex 2863 |
. . . . . . . . . . 11
⊢ a ∈
V |
| 18 | 16, 17 | brssetsn 4760 |
. . . . . . . . . 10
⊢ ({x} S a ↔ x ∈ a) |
| 19 | | vex 2863 |
. . . . . . . . . . 11
⊢ y ∈
V |
| 20 | | vex 2863 |
. . . . . . . . . . 11
⊢ b ∈
V |
| 21 | 19, 20 | brssetsn 4760 |
. . . . . . . . . 10
⊢ ({y} S b ↔ y ∈ b) |
| 22 | 18, 21 | anbi12i 678 |
. . . . . . . . 9
⊢ (({x} S a ∧ {y} S b) ↔ (x
∈ a ∧ y ∈ b)) |
| 23 | 8, 15, 22 | 3bitri 262 |
. . . . . . . 8
⊢ (∃t∃u((t S a ∧ u S b) ∧ (t = {x} ∧ u = {y})) ↔ (x
∈ a ∧ y ∈ b)) |
| 24 | 23 | anbi1i 676 |
. . . . . . 7
⊢ ((∃t∃u((t S a ∧ u S b) ∧ (t = {x} ∧ u = {y})) ∧ x ⊆ y) ↔ ((x
∈ a ∧ y ∈ b) ∧ x ⊆ y)) |
| 25 | 2, 4, 24 | 3bitr3i 266 |
. . . . . 6
⊢ (∃t∃u((t S a ∧ u S b) ∧ ((t = {x} ∧ u = {y}) ∧ x ⊆ y)) ↔ ((x
∈ a ∧ y ∈ b) ∧ x ⊆ y)) |
| 26 | 25 | 2exbii 1583 |
. . . . 5
⊢ (∃x∃y∃t∃u((t S a ∧ u S b) ∧ ((t = {x} ∧ u = {y}) ∧ x ⊆ y)) ↔ ∃x∃y((x ∈ a ∧ y ∈ b) ∧ x ⊆ y)) |
| 27 | 1, 26 | bitr4i 243 |
. . . 4
⊢ (∃x ∈ a ∃y ∈ b x ⊆ y ↔ ∃x∃y∃t∃u((t S a ∧ u S b) ∧ ((t = {x} ∧ u = {y}) ∧ x ⊆ y))) |
| 28 | 17, 20 | brlec 6114 |
. . . 4
⊢ (a ≤c b ↔ ∃x ∈ a ∃y ∈ b x ⊆ y) |
| 29 | | brco 4884 |
. . . . 5
⊢ (a(( S ∘ SI S ) ∘ ◡ S )b ↔ ∃t(a◡ S t ∧ t( S ∘ SI S )b)) |
| 30 | | brcnv 4893 |
. . . . . . . 8
⊢ (a◡ S t ↔ t S a) |
| 31 | | brco 4884 |
. . . . . . . . 9
⊢ (t( S ∘ SI S )b ↔ ∃u(t SI S u ∧ u S b)) |
| 32 | | brsi 4762 |
. . . . . . . . . . . 12
⊢ (t SI S u ↔ ∃x∃y(t = {x} ∧ u = {y} ∧ x S y)) |
| 33 | | df-3an 936 |
. . . . . . . . . . . . . 14
⊢ ((t = {x} ∧ u = {y} ∧ x S y) ↔ ((t =
{x} ∧
u = {y}) ∧ x S y)) |
| 34 | 16, 19 | brsset 4759 |
. . . . . . . . . . . . . . 15
⊢ (x S y ↔ x ⊆ y) |
| 35 | 34 | anbi2i 675 |
. . . . . . . . . . . . . 14
⊢ (((t = {x} ∧ u = {y}) ∧ x S y) ↔ ((t =
{x} ∧
u = {y}) ∧ x ⊆ y)) |
| 36 | 33, 35 | bitri 240 |
. . . . . . . . . . . . 13
⊢ ((t = {x} ∧ u = {y} ∧ x S y) ↔ ((t =
{x} ∧
u = {y}) ∧ x ⊆ y)) |
| 37 | 36 | 2exbii 1583 |
. . . . . . . . . . . 12
⊢ (∃x∃y(t = {x} ∧ u = {y} ∧ x S y) ↔ ∃x∃y((t = {x} ∧ u = {y}) ∧ x ⊆ y)) |
| 38 | 32, 37 | bitri 240 |
. . . . . . . . . . 11
⊢ (t SI S u ↔ ∃x∃y((t = {x} ∧ u = {y}) ∧ x ⊆ y)) |
| 39 | 38 | anbi2ci 677 |
. . . . . . . . . 10
⊢ ((t SI S u ∧ u S b) ↔
(u S b ∧ ∃x∃y((t = {x} ∧ u = {y}) ∧ x ⊆ y))) |
| 40 | 39 | exbii 1582 |
. . . . . . . . 9
⊢ (∃u(t SI S u ∧ u S b) ↔ ∃u(u S b ∧ ∃x∃y((t = {x} ∧ u = {y}) ∧ x ⊆ y))) |
| 41 | 31, 40 | bitri 240 |
. . . . . . . 8
⊢ (t( S ∘ SI S )b ↔ ∃u(u S b ∧ ∃x∃y((t = {x} ∧ u = {y}) ∧ x ⊆ y))) |
| 42 | 30, 41 | anbi12i 678 |
. . . . . . 7
⊢ ((a◡ S t ∧ t( S ∘ SI S )b) ↔ (t S a ∧ ∃u(u S b ∧ ∃x∃y((t = {x} ∧ u = {y}) ∧ x ⊆ y)))) |
| 43 | | 19.42v 1905 |
. . . . . . 7
⊢ (∃u(t S a ∧ (u S b ∧ ∃x∃y((t = {x} ∧ u = {y}) ∧ x ⊆ y))) ↔ (t S a ∧ ∃u(u S b ∧ ∃x∃y((t = {x} ∧ u = {y}) ∧ x ⊆ y)))) |
| 44 | | 19.42vv 1907 |
. . . . . . . . 9
⊢ (∃x∃y((t S a ∧ u S b) ∧ ((t = {x} ∧ u = {y}) ∧ x ⊆ y)) ↔ ((t S a ∧ u S b) ∧ ∃x∃y((t = {x} ∧ u = {y}) ∧ x ⊆ y))) |
| 45 | | anass 630 |
. . . . . . . . 9
⊢ (((t S a ∧ u S b) ∧ ∃x∃y((t = {x} ∧ u = {y}) ∧ x ⊆ y)) ↔ (t S a ∧ (u S b ∧ ∃x∃y((t = {x} ∧ u = {y}) ∧ x ⊆ y)))) |
| 46 | 44, 45 | bitr2i 241 |
. . . . . . . 8
⊢ ((t S a ∧ (u S b ∧ ∃x∃y((t = {x} ∧ u = {y}) ∧ x ⊆ y))) ↔ ∃x∃y((t S a ∧ u S b) ∧ ((t = {x} ∧ u = {y}) ∧ x ⊆ y))) |
| 47 | 46 | exbii 1582 |
. . . . . . 7
⊢ (∃u(t S a ∧ (u S b ∧ ∃x∃y((t = {x} ∧ u = {y}) ∧ x ⊆ y))) ↔ ∃u∃x∃y((t S a ∧ u S b) ∧ ((t = {x} ∧ u = {y}) ∧ x ⊆ y))) |
| 48 | 42, 43, 47 | 3bitr2i 264 |
. . . . . 6
⊢ ((a◡ S t ∧ t( S ∘ SI S )b) ↔ ∃u∃x∃y((t S a ∧ u S b) ∧ ((t = {x} ∧ u = {y}) ∧ x ⊆ y))) |
| 49 | 48 | exbii 1582 |
. . . . 5
⊢ (∃t(a◡ S t ∧ t( S ∘ SI S )b) ↔ ∃t∃u∃x∃y((t S a ∧ u S b) ∧ ((t = {x} ∧ u = {y}) ∧ x ⊆ y))) |
| 50 | | exrot4 1745 |
. . . . 5
⊢ (∃t∃u∃x∃y((t S a ∧ u S b) ∧ ((t = {x} ∧ u = {y}) ∧ x ⊆ y)) ↔ ∃x∃y∃t∃u((t S a ∧ u S b) ∧ ((t = {x} ∧ u = {y}) ∧ x ⊆ y))) |
| 51 | 29, 49, 50 | 3bitri 262 |
. . . 4
⊢ (a(( S ∘ SI S ) ∘ ◡ S )b ↔ ∃x∃y∃t∃u((t S a ∧ u S b) ∧ ((t = {x} ∧ u = {y}) ∧ x ⊆ y))) |
| 52 | 27, 28, 51 | 3bitr4i 268 |
. . 3
⊢ (a ≤c b ↔ a(( S ∘ SI S ) ∘ ◡ S )b) |
| 53 | 52 | eqbrriv 4852 |
. 2
⊢ ≤c =
(( S ∘ SI S ) ∘ ◡ S ) |
| 54 | | ssetex 4745 |
. . . 4
⊢ S ∈
V |
| 55 | 54 | siex 4754 |
. . . 4
⊢ SI S ∈ V |
| 56 | 54, 55 | coex 4751 |
. . 3
⊢ ( S ∘ SI S ) ∈ V |
| 57 | 54 | cnvex 5103 |
. . 3
⊢ ◡ S ∈ V |
| 58 | 56, 57 | coex 4751 |
. 2
⊢ (( S ∘ SI S ) ∘ ◡ S ) ∈
V |
| 59 | 53, 58 | eqeltri 2423 |
1
⊢ ≤c
∈ V |