Step | Hyp | Ref
| Expression |
1 | | brex 4690 |
. 2
⊢ (A ≈ B
→ (A ∈ V ∧ B ∈
V)) |
2 | | brex 4690 |
. . 3
⊢ (℘1A ≈ ℘1B → (℘1A ∈ V ∧ ℘1B ∈
V)) |
3 | | pw1exb 4327 |
. . . 4
⊢ (℘1A ∈ V ↔
A ∈
V) |
4 | | pw1exb 4327 |
. . . 4
⊢ (℘1B ∈ V ↔
B ∈
V) |
5 | 3, 4 | anbi12i 678 |
. . 3
⊢ ((℘1A ∈ V ∧ ℘1B ∈ V) ↔
(A ∈ V
∧ B ∈ V)) |
6 | 2, 5 | sylib 188 |
. 2
⊢ (℘1A ≈ ℘1B → (A
∈ V ∧
B ∈
V)) |
7 | | breq1 4643 |
. . . 4
⊢ (a = A →
(a ≈ b ↔ A
≈ b)) |
8 | | pw1eq 4144 |
. . . . 5
⊢ (a = A →
℘1a = ℘1A) |
9 | 8 | breq1d 4650 |
. . . 4
⊢ (a = A →
(℘1a ≈ ℘1b ↔ ℘1A ≈ ℘1b)) |
10 | 7, 9 | bibi12d 312 |
. . 3
⊢ (a = A →
((a ≈ b ↔ ℘1a ≈ ℘1b) ↔ (A
≈ b ↔ ℘1A ≈ ℘1b))) |
11 | | breq2 4644 |
. . . 4
⊢ (b = B →
(A ≈ b ↔ A
≈ B)) |
12 | | pw1eq 4144 |
. . . . 5
⊢ (b = B →
℘1b = ℘1B) |
13 | 12 | breq2d 4652 |
. . . 4
⊢ (b = B →
(℘1A ≈ ℘1b ↔ ℘1A ≈ ℘1B)) |
14 | 11, 13 | bibi12d 312 |
. . 3
⊢ (b = B →
((A ≈ b ↔ ℘1A ≈ ℘1b) ↔ (A
≈ B ↔ ℘1A ≈ ℘1B))) |
15 | | bren 6031 |
. . . . 5
⊢ (a ≈ b
↔ ∃f f:a–1-1-onto→b) |
16 | | f1ofun 5290 |
. . . . . . . . . 10
⊢ (f:a–1-1-onto→b →
Fun f) |
17 | | funsi 5521 |
. . . . . . . . . 10
⊢ (Fun f → Fun SI
f) |
18 | 16, 17 | syl 15 |
. . . . . . . . 9
⊢ (f:a–1-1-onto→b →
Fun SI f) |
19 | | f1odm 5291 |
. . . . . . . . . 10
⊢ (f:a–1-1-onto→b →
dom f = a) |
20 | | dmsi 5520 |
. . . . . . . . . . 11
⊢ dom SI f = ℘1dom f |
21 | | pw1eq 4144 |
. . . . . . . . . . 11
⊢ (dom f = a →
℘1dom f = ℘1a) |
22 | 20, 21 | syl5eq 2397 |
. . . . . . . . . 10
⊢ (dom f = a → dom
SI f = ℘1a) |
23 | 19, 22 | syl 15 |
. . . . . . . . 9
⊢ (f:a–1-1-onto→b →
dom SI f =
℘1a) |
24 | | df-fn 4791 |
. . . . . . . . 9
⊢ ( SI f Fn ℘1a ↔ (Fun SI
f ∧
dom SI f =
℘1a)) |
25 | 18, 23, 24 | sylanbrc 645 |
. . . . . . . 8
⊢ (f:a–1-1-onto→b →
SI f Fn ℘1a) |
26 | | f1of1 5287 |
. . . . . . . . . . 11
⊢ (f:a–1-1-onto→b →
f:a–1-1→b) |
27 | | df-f1 4793 |
. . . . . . . . . . . 12
⊢ (f:a–1-1→b
↔ (f:a–→b
∧ Fun ◡f)) |
28 | 27 | simprbi 450 |
. . . . . . . . . . 11
⊢ (f:a–1-1→b
→ Fun ◡f) |
29 | | funsi 5521 |
. . . . . . . . . . 11
⊢ (Fun ◡f →
Fun SI ◡f) |
30 | 26, 28, 29 | 3syl 18 |
. . . . . . . . . 10
⊢ (f:a–1-1-onto→b →
Fun SI ◡f) |
31 | | cnvsi 5519 |
. . . . . . . . . . 11
⊢ ◡ SI f = SI ◡f |
32 | 31 | funeqi 5129 |
. . . . . . . . . 10
⊢ (Fun ◡ SI f ↔ Fun SI ◡f) |
33 | 30, 32 | sylibr 203 |
. . . . . . . . 9
⊢ (f:a–1-1-onto→b →
Fun ◡ SI
f) |
34 | | f1ofo 5294 |
. . . . . . . . . 10
⊢ (f:a–1-1-onto→b →
f:a–onto→b) |
35 | | forn 5273 |
. . . . . . . . . 10
⊢ (f:a–onto→b
→ ran f = b) |
36 | | rnsi 5522 |
. . . . . . . . . . . 12
⊢ ran SI f = ℘1ran f |
37 | | dfrn4 4905 |
. . . . . . . . . . . 12
⊢ ran SI f = dom ◡ SI f |
38 | 36, 37 | eqtr3i 2375 |
. . . . . . . . . . 11
⊢ ℘1ran f = dom ◡ SI f |
39 | | pw1eq 4144 |
. . . . . . . . . . 11
⊢ (ran f = b →
℘1ran f = ℘1b) |
40 | 38, 39 | syl5eqr 2399 |
. . . . . . . . . 10
⊢ (ran f = b → dom
◡ SI
f = ℘1b) |
41 | 34, 35, 40 | 3syl 18 |
. . . . . . . . 9
⊢ (f:a–1-1-onto→b →
dom ◡ SI
f = ℘1b) |
42 | | df-fn 4791 |
. . . . . . . . 9
⊢ (◡ SI f Fn ℘1b ↔ (Fun ◡ SI f ∧ dom ◡ SI f = ℘1b)) |
43 | 33, 41, 42 | sylanbrc 645 |
. . . . . . . 8
⊢ (f:a–1-1-onto→b →
◡ SI
f Fn ℘1b) |
44 | | dff1o4 5295 |
. . . . . . . 8
⊢ ( SI f:℘1a–1-1-onto→℘1b ↔ ( SI f Fn ℘1a ∧ ◡ SI f Fn ℘1b)) |
45 | 25, 43, 44 | sylanbrc 645 |
. . . . . . 7
⊢ (f:a–1-1-onto→b →
SI f:℘1a–1-1-onto→℘1b) |
46 | | vex 2863 |
. . . . . . . . 9
⊢ f ∈
V |
47 | 46 | siex 4754 |
. . . . . . . 8
⊢ SI f ∈ V |
48 | 47 | f1oen 6034 |
. . . . . . 7
⊢ ( SI f:℘1a–1-1-onto→℘1b → ℘1a ≈ ℘1b) |
49 | 45, 48 | syl 15 |
. . . . . 6
⊢ (f:a–1-1-onto→b →
℘1a ≈ ℘1b) |
50 | 49 | exlimiv 1634 |
. . . . 5
⊢ (∃f f:a–1-1-onto→b →
℘1a ≈ ℘1b) |
51 | 15, 50 | sylbi 187 |
. . . 4
⊢ (a ≈ b
→ ℘1a ≈ ℘1b) |
52 | | bren 6031 |
. . . . 5
⊢ (℘1a ≈ ℘1b ↔ ∃g g:℘1a–1-1-onto→℘1b) |
53 | | f1ofun 5290 |
. . . . . . . . . . . . . 14
⊢ (g:℘1a–1-1-onto→℘1b → Fun g) |
54 | | fununiq 5518 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun g ∧ {x}g{y} ∧ {x}g{z}) → {y} =
{z}) |
55 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ y ∈
V |
56 | 55 | sneqb 3877 |
. . . . . . . . . . . . . . . 16
⊢ ({y} = {z} ↔
y = z) |
57 | 54, 56 | sylib 188 |
. . . . . . . . . . . . . . 15
⊢ ((Fun g ∧ {x}g{y} ∧ {x}g{z}) → y =
z) |
58 | 57 | 3expib 1154 |
. . . . . . . . . . . . . 14
⊢ (Fun g → (({x}g{y} ∧ {x}g{z}) → y =
z)) |
59 | 53, 58 | syl 15 |
. . . . . . . . . . . . 13
⊢ (g:℘1a–1-1-onto→℘1b → (({x}g{y} ∧ {x}g{z}) → y =
z)) |
60 | 59 | alrimivv 1632 |
. . . . . . . . . . . 12
⊢ (g:℘1a–1-1-onto→℘1b → ∀y∀z(({x}g{y} ∧ {x}g{z}) → y =
z)) |
61 | | sneq 3745 |
. . . . . . . . . . . . . 14
⊢ (y = z →
{y} = {z}) |
62 | 61 | breq2d 4652 |
. . . . . . . . . . . . 13
⊢ (y = z →
({x}g{y} ↔
{x}g{z})) |
63 | 62 | mo4 2237 |
. . . . . . . . . . . 12
⊢ (∃*y{x}g{y} ↔ ∀y∀z(({x}g{y} ∧ {x}g{z}) → y =
z)) |
64 | 60, 63 | sylibr 203 |
. . . . . . . . . . 11
⊢ (g:℘1a–1-1-onto→℘1b → ∃*y{x}g{y}) |
65 | 64 | alrimiv 1631 |
. . . . . . . . . 10
⊢ (g:℘1a–1-1-onto→℘1b → ∀x∃*y{x}g{y}) |
66 | | funopab 5140 |
. . . . . . . . . 10
⊢ (Fun {〈x, y〉 ∣ {x}g{y}} ↔
∀x∃*y{x}g{y}) |
67 | 65, 66 | sylibr 203 |
. . . . . . . . 9
⊢ (g:℘1a–1-1-onto→℘1b → Fun {〈x, y〉 ∣ {x}g{y}}) |
68 | | dmopab 4916 |
. . . . . . . . . 10
⊢ dom {〈x, y〉 ∣ {x}g{y}} =
{x ∣
∃y{x}g{y}} |
69 | | eldm 4899 |
. . . . . . . . . . . . . . 15
⊢ ({x} ∈ dom g ↔ ∃z{x}gz) |
70 | | brelrn 4961 |
. . . . . . . . . . . . . . . . 17
⊢ ({x}gz → z ∈ ran g) |
71 | | f1ofo 5294 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (g:℘1a–1-1-onto→℘1b → g:℘1a–onto→℘1b) |
72 | | forn 5273 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (g:℘1a–onto→℘1b → ran g =
℘1b) |
73 | 71, 72 | syl 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (g:℘1a–1-1-onto→℘1b → ran g =
℘1b) |
74 | 73 | eleq2d 2420 |
. . . . . . . . . . . . . . . . . . 19
⊢ (g:℘1a–1-1-onto→℘1b → (z
∈ ran g
↔ z ∈ ℘1b)) |
75 | | elpw1 4145 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (z ∈ ℘1b ↔ ∃w ∈ b z = {w}) |
76 | | breq2 4644 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (z = {w} →
({x}gz ↔
{x}g{w})) |
77 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ w ∈
V |
78 | | sneq 3745 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (y = w →
{y} = {w}) |
79 | 78 | breq2d 4652 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (y = w →
({x}g{y} ↔
{x}g{w})) |
80 | 77, 79 | spcev 2947 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({x}g{w} → ∃y{x}g{y}) |
81 | 76, 80 | syl6bi 219 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (z = {w} →
({x}gz → ∃y{x}g{y})) |
82 | 81 | rexlimivw 2735 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∃w ∈ b z = {w} →
({x}gz → ∃y{x}g{y})) |
83 | 75, 82 | sylbi 187 |
. . . . . . . . . . . . . . . . . . 19
⊢ (z ∈ ℘1b → ({x}gz → ∃y{x}g{y})) |
84 | 74, 83 | syl6bi 219 |
. . . . . . . . . . . . . . . . . 18
⊢ (g:℘1a–1-1-onto→℘1b → (z
∈ ran g
→ ({x}gz → ∃y{x}g{y}))) |
85 | 84 | com23 72 |
. . . . . . . . . . . . . . . . 17
⊢ (g:℘1a–1-1-onto→℘1b → ({x}gz → (z
∈ ran g
→ ∃y{x}g{y}))) |
86 | 70, 85 | mpdi 38 |
. . . . . . . . . . . . . . . 16
⊢ (g:℘1a–1-1-onto→℘1b → ({x}gz → ∃y{x}g{y})) |
87 | 86 | exlimdv 1636 |
. . . . . . . . . . . . . . 15
⊢ (g:℘1a–1-1-onto→℘1b → (∃z{x}gz → ∃y{x}g{y})) |
88 | 69, 87 | syl5bi 208 |
. . . . . . . . . . . . . 14
⊢ (g:℘1a–1-1-onto→℘1b → ({x}
∈ dom g
→ ∃y{x}g{y})) |
89 | | breldm 4912 |
. . . . . . . . . . . . . . 15
⊢ ({x}g{y} → {x}
∈ dom g) |
90 | 89 | exlimiv 1634 |
. . . . . . . . . . . . . 14
⊢ (∃y{x}g{y} → {x}
∈ dom g) |
91 | 88, 90 | impbid1 194 |
. . . . . . . . . . . . 13
⊢ (g:℘1a–1-1-onto→℘1b → ({x}
∈ dom g
↔ ∃y{x}g{y})) |
92 | | f1odm 5291 |
. . . . . . . . . . . . . 14
⊢ (g:℘1a–1-1-onto→℘1b → dom g =
℘1a) |
93 | 92 | eleq2d 2420 |
. . . . . . . . . . . . 13
⊢ (g:℘1a–1-1-onto→℘1b → ({x}
∈ dom g
↔ {x} ∈ ℘1a)) |
94 | 91, 93 | bitr3d 246 |
. . . . . . . . . . . 12
⊢ (g:℘1a–1-1-onto→℘1b → (∃y{x}g{y} ↔ {x}
∈ ℘1a)) |
95 | | snelpw1 4147 |
. . . . . . . . . . . 12
⊢ ({x} ∈ ℘1a ↔ x ∈ a) |
96 | 94, 95 | syl6bb 252 |
. . . . . . . . . . 11
⊢ (g:℘1a–1-1-onto→℘1b → (∃y{x}g{y} ↔ x
∈ a)) |
97 | 96 | abbi1dv 2470 |
. . . . . . . . . 10
⊢ (g:℘1a–1-1-onto→℘1b → {x
∣ ∃y{x}g{y}} = a) |
98 | 68, 97 | syl5eq 2397 |
. . . . . . . . 9
⊢ (g:℘1a–1-1-onto→℘1b → dom {〈x, y〉 ∣ {x}g{y}} = a) |
99 | | df-fn 4791 |
. . . . . . . . 9
⊢ ({〈x, y〉 ∣ {x}g{y}} Fn
a ↔ (Fun {〈x, y〉 ∣ {x}g{y}} ∧ dom {〈x, y〉 ∣ {x}g{y}} = a)) |
100 | 67, 98, 99 | sylanbrc 645 |
. . . . . . . 8
⊢ (g:℘1a–1-1-onto→℘1b → {〈x, y〉 ∣ {x}g{y}} Fn
a) |
101 | | f1ocnv 5300 |
. . . . . . . . . . . . . . 15
⊢ (g:℘1a–1-1-onto→℘1b → ◡g:℘1b–1-1-onto→℘1a) |
102 | | f1ofun 5290 |
. . . . . . . . . . . . . . 15
⊢ (◡g:℘1b–1-1-onto→℘1a → Fun ◡g) |
103 | | fununiq 5518 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun ◡g ∧ {y}◡g{x} ∧ {y}◡g{z}) →
{x} = {z}) |
104 | 103 | 3expib 1154 |
. . . . . . . . . . . . . . . 16
⊢ (Fun ◡g →
(({y}◡g{x} ∧ {y}◡g{z}) →
{x} = {z})) |
105 | | brcnv 4893 |
. . . . . . . . . . . . . . . . 17
⊢ ({y}◡g{x} ↔
{x}g{y}) |
106 | | brcnv 4893 |
. . . . . . . . . . . . . . . . 17
⊢ ({y}◡g{z} ↔
{z}g{y}) |
107 | 105, 106 | anbi12i 678 |
. . . . . . . . . . . . . . . 16
⊢ (({y}◡g{x} ∧ {y}◡g{z}) ↔
({x}g{y} ∧ {z}g{y})) |
108 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ x ∈
V |
109 | 108 | sneqb 3877 |
. . . . . . . . . . . . . . . 16
⊢ ({x} = {z} ↔
x = z) |
110 | 104, 107,
109 | 3imtr3g 260 |
. . . . . . . . . . . . . . 15
⊢ (Fun ◡g →
(({x}g{y} ∧ {z}g{y}) →
x = z)) |
111 | 101, 102,
110 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (g:℘1a–1-1-onto→℘1b → (({x}g{y} ∧ {z}g{y}) → x =
z)) |
112 | 111 | alrimivv 1632 |
. . . . . . . . . . . . 13
⊢ (g:℘1a–1-1-onto→℘1b → ∀x∀z(({x}g{y} ∧ {z}g{y}) → x =
z)) |
113 | | sneq 3745 |
. . . . . . . . . . . . . . 15
⊢ (x = z →
{x} = {z}) |
114 | 113 | breq1d 4650 |
. . . . . . . . . . . . . 14
⊢ (x = z →
({x}g{y} ↔
{z}g{y})) |
115 | 114 | mo4 2237 |
. . . . . . . . . . . . 13
⊢ (∃*x{x}g{y} ↔ ∀x∀z(({x}g{y} ∧ {z}g{y}) → x =
z)) |
116 | 112, 115 | sylibr 203 |
. . . . . . . . . . . 12
⊢ (g:℘1a–1-1-onto→℘1b → ∃*x{x}g{y}) |
117 | 116 | alrimiv 1631 |
. . . . . . . . . . 11
⊢ (g:℘1a–1-1-onto→℘1b → ∀y∃*x{x}g{y}) |
118 | | funopab 5140 |
. . . . . . . . . . 11
⊢ (Fun {〈y, x〉 ∣ {x}g{y}} ↔
∀y∃*x{x}g{y}) |
119 | 117, 118 | sylibr 203 |
. . . . . . . . . 10
⊢ (g:℘1a–1-1-onto→℘1b → Fun {〈y, x〉 ∣ {x}g{y}}) |
120 | | dmopab 4916 |
. . . . . . . . . . 11
⊢ dom {〈y, x〉 ∣ {x}g{y}} =
{y ∣
∃x{x}g{y}} |
121 | | elrn 4897 |
. . . . . . . . . . . . . . . 16
⊢ ({y} ∈ ran g ↔ ∃z zg{y}) |
122 | | breldm 4912 |
. . . . . . . . . . . . . . . . . 18
⊢ (zg{y} → z
∈ dom g) |
123 | 92 | eleq2d 2420 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (g:℘1a–1-1-onto→℘1b → (z
∈ dom g
↔ z ∈ ℘1a)) |
124 | | elpw1 4145 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (z ∈ ℘1a ↔ ∃w ∈ a z = {w}) |
125 | | breq1 4643 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (z = {w} →
(zg{y} ↔
{w}g{y})) |
126 | | sneq 3745 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (x = w →
{x} = {w}) |
127 | 126 | breq1d 4650 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (x = w →
({x}g{y} ↔
{w}g{y})) |
128 | 77, 127 | spcev 2947 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({w}g{y} → ∃x{x}g{y}) |
129 | 125, 128 | syl6bi 219 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (z = {w} →
(zg{y} →
∃x{x}g{y})) |
130 | 129 | rexlimivw 2735 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∃w ∈ a z = {w} →
(zg{y} →
∃x{x}g{y})) |
131 | 124, 130 | sylbi 187 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (z ∈ ℘1a → (zg{y} → ∃x{x}g{y})) |
132 | 123, 131 | syl6bi 219 |
. . . . . . . . . . . . . . . . . . 19
⊢ (g:℘1a–1-1-onto→℘1b → (z
∈ dom g
→ (zg{y} →
∃x{x}g{y}))) |
133 | 132 | com23 72 |
. . . . . . . . . . . . . . . . . 18
⊢ (g:℘1a–1-1-onto→℘1b → (zg{y} → (z
∈ dom g
→ ∃x{x}g{y}))) |
134 | 122, 133 | mpdi 38 |
. . . . . . . . . . . . . . . . 17
⊢ (g:℘1a–1-1-onto→℘1b → (zg{y} → ∃x{x}g{y})) |
135 | 134 | exlimdv 1636 |
. . . . . . . . . . . . . . . 16
⊢ (g:℘1a–1-1-onto→℘1b → (∃z zg{y} → ∃x{x}g{y})) |
136 | 121, 135 | syl5bi 208 |
. . . . . . . . . . . . . . 15
⊢ (g:℘1a–1-1-onto→℘1b → ({y}
∈ ran g
→ ∃x{x}g{y})) |
137 | | brelrn 4961 |
. . . . . . . . . . . . . . . 16
⊢ ({x}g{y} → {y}
∈ ran g) |
138 | 137 | exlimiv 1634 |
. . . . . . . . . . . . . . 15
⊢ (∃x{x}g{y} → {y}
∈ ran g) |
139 | 136, 138 | impbid1 194 |
. . . . . . . . . . . . . 14
⊢ (g:℘1a–1-1-onto→℘1b → ({y}
∈ ran g
↔ ∃x{x}g{y})) |
140 | 73 | eleq2d 2420 |
. . . . . . . . . . . . . 14
⊢ (g:℘1a–1-1-onto→℘1b → ({y}
∈ ran g
↔ {y} ∈ ℘1b)) |
141 | 139, 140 | bitr3d 246 |
. . . . . . . . . . . . 13
⊢ (g:℘1a–1-1-onto→℘1b → (∃x{x}g{y} ↔ {y}
∈ ℘1b)) |
142 | | snelpw1 4147 |
. . . . . . . . . . . . 13
⊢ ({y} ∈ ℘1b ↔ y ∈ b) |
143 | 141, 142 | syl6bb 252 |
. . . . . . . . . . . 12
⊢ (g:℘1a–1-1-onto→℘1b → (∃x{x}g{y} ↔ y
∈ b)) |
144 | 143 | abbi1dv 2470 |
. . . . . . . . . . 11
⊢ (g:℘1a–1-1-onto→℘1b → {y
∣ ∃x{x}g{y}} = b) |
145 | 120, 144 | syl5eq 2397 |
. . . . . . . . . 10
⊢ (g:℘1a–1-1-onto→℘1b → dom {〈y, x〉 ∣ {x}g{y}} = b) |
146 | | df-fn 4791 |
. . . . . . . . . 10
⊢ ({〈y, x〉 ∣ {x}g{y}} Fn
b ↔ (Fun {〈y, x〉 ∣ {x}g{y}} ∧ dom {〈y, x〉 ∣ {x}g{y}} = b)) |
147 | 119, 145,
146 | sylanbrc 645 |
. . . . . . . . 9
⊢ (g:℘1a–1-1-onto→℘1b → {〈y, x〉 ∣ {x}g{y}} Fn
b) |
148 | | cnvopab 5031 |
. . . . . . . . . 10
⊢ ◡{〈x, y〉 ∣ {x}g{y}} = {〈y, x〉 ∣ {x}g{y}} |
149 | 148 | fneq1i 5179 |
. . . . . . . . 9
⊢ (◡{〈x, y〉 ∣ {x}g{y}} Fn b ↔
{〈y,
x〉 ∣ {x}g{y}} Fn
b) |
150 | 147, 149 | sylibr 203 |
. . . . . . . 8
⊢ (g:℘1a–1-1-onto→℘1b → ◡{〈x, y〉 ∣ {x}g{y}} Fn b) |
151 | | dff1o4 5295 |
. . . . . . . 8
⊢ ({〈x, y〉 ∣ {x}g{y}}:a–1-1-onto→b ↔
({〈x,
y〉 ∣ {x}g{y}} Fn
a ∧ ◡{〈x, y〉 ∣ {x}g{y}} Fn b)) |
152 | 100, 150,
151 | sylanbrc 645 |
. . . . . . 7
⊢ (g:℘1a–1-1-onto→℘1b → {〈x, y〉 ∣ {x}g{y}}:a–1-1-onto→b) |
153 | | enpw1lem1 6062 |
. . . . . . . 8
⊢ {〈x, y〉 ∣ {x}g{y}} ∈ V |
154 | 153 | f1oen 6034 |
. . . . . . 7
⊢ ({〈x, y〉 ∣ {x}g{y}}:a–1-1-onto→b →
a ≈ b) |
155 | 152, 154 | syl 15 |
. . . . . 6
⊢ (g:℘1a–1-1-onto→℘1b → a
≈ b) |
156 | 155 | exlimiv 1634 |
. . . . 5
⊢ (∃g g:℘1a–1-1-onto→℘1b → a
≈ b) |
157 | 52, 156 | sylbi 187 |
. . . 4
⊢ (℘1a ≈ ℘1b → a
≈ b) |
158 | 51, 157 | impbii 180 |
. . 3
⊢ (a ≈ b
↔ ℘1a ≈ ℘1b) |
159 | 10, 14, 158 | vtocl2g 2919 |
. 2
⊢ ((A ∈ V ∧ B ∈ V) → (A
≈ B ↔ ℘1A ≈ ℘1B)) |
160 | 1, 6, 159 | pm5.21nii 342 |
1
⊢ (A ≈ B
↔ ℘1A ≈ ℘1B) |