![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > fdm | GIF version |
Description: The domain of a mapping. (Contributed by set.mm contributors, 2-Aug-1994.) |
Ref | Expression |
---|---|
fdm | ⊢ (F:A–→B → dom F = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5223 | . 2 ⊢ (F:A–→B → F Fn A) | |
2 | fndm 5182 | . 2 ⊢ (F Fn A → dom F = A) | |
3 | 1, 2 | syl 15 | 1 ⊢ (F:A–→B → dom F = A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 dom cdm 4772 Fn wfn 4776 –→wf 4777 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-fn 4790 df-f 4791 |
This theorem is referenced by: fdmi 5227 fssxp 5232 ffdm 5234 dmfex 5247 f00 5249 foima 5274 foco 5279 f1ores 5300 f1imacnv 5302 resdif 5306 fimacnv 5411 dff3 5420 dffo4 5423 ffvresb 5431 mapprc 6004 map0b 6024 mapsn 6026 enprmaplem3 6078 enprmaplem6 6081 |
Copyright terms: Public domain | W3C validator |