New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fdm | GIF version |
Description: The domain of a mapping. (Contributed by set.mm contributors, 2-Aug-1994.) |
Ref | Expression |
---|---|
fdm | ⊢ (F:A–→B → dom F = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5224 | . 2 ⊢ (F:A–→B → F Fn A) | |
2 | fndm 5183 | . 2 ⊢ (F Fn A → dom F = A) | |
3 | 1, 2 | syl 15 | 1 ⊢ (F:A–→B → dom F = A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 dom cdm 4773 Fn wfn 4777 –→wf 4778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-fn 4791 df-f 4792 |
This theorem is referenced by: fdmi 5228 fssxp 5233 ffdm 5235 dmfex 5248 f00 5250 foima 5275 foco 5280 f1ores 5301 f1imacnv 5303 resdif 5307 fimacnv 5412 dff3 5421 dffo4 5424 ffvresb 5432 mapprc 6005 map0b 6025 mapsn 6027 enprmaplem3 6079 enprmaplem6 6082 |
Copyright terms: Public domain | W3C validator |