NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ffun GIF version

Theorem ffun 5226
Description: A mapping is a function. (Contributed by set.mm contributors, 3-Aug-1994.)
Assertion
Ref Expression
ffun (F:A–→B → Fun F)

Proof of Theorem ffun
StepHypRef Expression
1 ffn 5224 . 2 (F:A–→BF Fn A)
2 fnfun 5182 . 2 (F Fn A → Fun F)
31, 2syl 15 1 (F:A–→B → Fun F)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 4776   Fn wfn 4777  –→wf 4778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-fn 4791  df-f 4792
This theorem is referenced by:  funssxp  5234  f00  5250  fofun  5271  f1ores  5301  fimacnv  5412  dff3  5421  mapsspm  6022  xpsnen  6050  enprmaplem3  6079
  Copyright terms: Public domain W3C validator