Step | Hyp | Ref
| Expression |
1 | | fnfun 5182 |
. . . . 5
⊢ (F Fn A →
Fun F) |
2 | 1 | 3ad2ant1 976 |
. . . 4
⊢ ((F Fn A ∧ G Fn B ∧ ((A ∩ B) =
∅ ∧
X ∈
A)) → Fun F) |
3 | | fnfun 5182 |
. . . . 5
⊢ (G Fn B →
Fun G) |
4 | 3 | 3ad2ant2 977 |
. . . 4
⊢ ((F Fn A ∧ G Fn B ∧ ((A ∩ B) =
∅ ∧
X ∈
A)) → Fun G) |
5 | | fndm 5183 |
. . . . . . . . 9
⊢ (F Fn A →
dom F = A) |
6 | | fndm 5183 |
. . . . . . . . 9
⊢ (G Fn B →
dom G = B) |
7 | | ineq12 3453 |
. . . . . . . . 9
⊢ ((dom F = A ∧ dom G =
B) → (dom F ∩ dom G) =
(A ∩ B)) |
8 | 5, 6, 7 | syl2an 463 |
. . . . . . . 8
⊢ ((F Fn A ∧ G Fn B) → (dom F
∩ dom G) = (A ∩ B)) |
9 | 8 | eqeq1d 2361 |
. . . . . . 7
⊢ ((F Fn A ∧ G Fn B) → ((dom F ∩ dom G) =
∅ ↔ (A ∩ B) =
∅)) |
10 | 9 | biimprd 214 |
. . . . . 6
⊢ ((F Fn A ∧ G Fn B) → ((A
∩ B) = ∅ → (dom F ∩ dom G) =
∅)) |
11 | 10 | adantrd 454 |
. . . . 5
⊢ ((F Fn A ∧ G Fn B) → (((A
∩ B) = ∅ ∧ X ∈ A) → (dom F
∩ dom G) = ∅)) |
12 | 11 | 3impia 1148 |
. . . 4
⊢ ((F Fn A ∧ G Fn B ∧ ((A ∩ B) =
∅ ∧
X ∈
A)) → (dom F ∩ dom G) =
∅) |
13 | | fvun 5379 |
. . . 4
⊢ (((Fun F ∧ Fun G) ∧ (dom F ∩ dom G) =
∅) → ((F ∪ G)
‘X) = ((F ‘X)
∪ (G ‘X))) |
14 | 2, 4, 12, 13 | syl21anc 1181 |
. . 3
⊢ ((F Fn A ∧ G Fn B ∧ ((A ∩ B) =
∅ ∧
X ∈
A)) → ((F ∪ G)
‘X) = ((F ‘X)
∪ (G ‘X))) |
15 | | disj 3592 |
. . . . . . . . 9
⊢ ((A ∩ B) =
∅ ↔ ∀x ∈ A ¬
x ∈
B) |
16 | | eleq1 2413 |
. . . . . . . . . . 11
⊢ (x = X →
(x ∈
B ↔ X ∈ B)) |
17 | 16 | notbid 285 |
. . . . . . . . . 10
⊢ (x = X →
(¬ x ∈ B ↔
¬ X ∈
B)) |
18 | 17 | rspccv 2953 |
. . . . . . . . 9
⊢ (∀x ∈ A ¬
x ∈
B → (X ∈ A → ¬ X
∈ B)) |
19 | 15, 18 | sylbi 187 |
. . . . . . . 8
⊢ ((A ∩ B) =
∅ → (X ∈ A → ¬ X
∈ B)) |
20 | 19 | imp 418 |
. . . . . . 7
⊢ (((A ∩ B) =
∅ ∧
X ∈
A) → ¬ X ∈ B) |
21 | 20 | 3ad2ant3 978 |
. . . . . 6
⊢ ((F Fn A ∧ G Fn B ∧ ((A ∩ B) =
∅ ∧
X ∈
A)) → ¬ X ∈ B) |
22 | 6 | 3ad2ant2 977 |
. . . . . . 7
⊢ ((F Fn A ∧ G Fn B ∧ ((A ∩ B) =
∅ ∧
X ∈
A)) → dom G = B) |
23 | 22 | eleq2d 2420 |
. . . . . 6
⊢ ((F Fn A ∧ G Fn B ∧ ((A ∩ B) =
∅ ∧
X ∈
A)) → (X ∈ dom G ↔ X ∈ B)) |
24 | 21, 23 | mtbird 292 |
. . . . 5
⊢ ((F Fn A ∧ G Fn B ∧ ((A ∩ B) =
∅ ∧
X ∈
A)) → ¬ X ∈ dom G) |
25 | | ndmfv 5350 |
. . . . 5
⊢ (¬ X ∈ dom G → (G
‘X) = ∅) |
26 | 24, 25 | syl 15 |
. . . 4
⊢ ((F Fn A ∧ G Fn B ∧ ((A ∩ B) =
∅ ∧
X ∈
A)) → (G ‘X) =
∅) |
27 | 26 | uneq2d 3419 |
. . 3
⊢ ((F Fn A ∧ G Fn B ∧ ((A ∩ B) =
∅ ∧
X ∈
A)) → ((F ‘X)
∪ (G ‘X)) = ((F
‘X) ∪ ∅)) |
28 | 14, 27 | eqtrd 2385 |
. 2
⊢ ((F Fn A ∧ G Fn B ∧ ((A ∩ B) =
∅ ∧
X ∈
A)) → ((F ∪ G)
‘X) = ((F ‘X)
∪ ∅)) |
29 | | un0 3576 |
. 2
⊢ ((F ‘X)
∪ ∅) = (F ‘X) |
30 | 28, 29 | syl6eq 2401 |
1
⊢ ((F Fn A ∧ G Fn B ∧ ((A ∩ B) =
∅ ∧
X ∈
A)) → ((F ∪ G)
‘X) = (F ‘X)) |