Step | Hyp | Ref
| Expression |
1 | | funfn 5137 |
. . 3
⊢ (Fun F ↔ F Fn
dom F) |
2 | | elin 3220 |
. . . . . . . . 9
⊢ (x ∈ (B ∩ dom F)
↔ (x ∈ B ∧ x ∈ dom F)) |
3 | | ancom 437 |
. . . . . . . . 9
⊢ ((x ∈ B ∧ x ∈ dom F) ↔ (x
∈ dom F
∧ x ∈ B)) |
4 | 2, 3 | bitri 240 |
. . . . . . . 8
⊢ (x ∈ (B ∩ dom F)
↔ (x ∈ dom F ∧ x ∈ B)) |
5 | 4 | anbi1i 676 |
. . . . . . 7
⊢ ((x ∈ (B ∩ dom F)
∧ ((F
↾ B)
‘x) ∈ A) ↔
((x ∈ dom
F ∧
x ∈
B) ∧
((F ↾
B) ‘x) ∈ A)) |
6 | | fvres 5343 |
. . . . . . . . . 10
⊢ (x ∈ B → ((F
↾ B)
‘x) = (F ‘x)) |
7 | 6 | eleq1d 2419 |
. . . . . . . . 9
⊢ (x ∈ B → (((F
↾ B)
‘x) ∈ A ↔
(F ‘x) ∈ A)) |
8 | 7 | adantl 452 |
. . . . . . . 8
⊢ ((x ∈ dom F ∧ x ∈ B) → (((F
↾ B)
‘x) ∈ A ↔
(F ‘x) ∈ A)) |
9 | 8 | pm5.32i 618 |
. . . . . . 7
⊢ (((x ∈ dom F ∧ x ∈ B) ∧ ((F ↾ B) ‘x)
∈ A)
↔ ((x ∈ dom F ∧ x ∈ B) ∧ (F
‘x) ∈ A)) |
10 | 5, 9 | bitri 240 |
. . . . . 6
⊢ ((x ∈ (B ∩ dom F)
∧ ((F
↾ B)
‘x) ∈ A) ↔
((x ∈ dom
F ∧
x ∈
B) ∧
(F ‘x) ∈ A)) |
11 | 10 | a1i 10 |
. . . . 5
⊢ (F Fn dom F
→ ((x ∈ (B ∩ dom
F) ∧
((F ↾
B) ‘x) ∈ A) ↔ ((x
∈ dom F
∧ x ∈ B) ∧ (F
‘x) ∈ A))) |
12 | | an32 773 |
. . . . 5
⊢ (((x ∈ dom F ∧ x ∈ B) ∧ (F ‘x)
∈ A)
↔ ((x ∈ dom F ∧ (F
‘x) ∈ A) ∧ x ∈ B)) |
13 | 11, 12 | syl6bb 252 |
. . . 4
⊢ (F Fn dom F
→ ((x ∈ (B ∩ dom
F) ∧
((F ↾
B) ‘x) ∈ A) ↔ ((x
∈ dom F
∧ (F
‘x) ∈ A) ∧ x ∈ B))) |
14 | | fnfun 5182 |
. . . . . . . 8
⊢ (F Fn dom F
→ Fun F) |
15 | | funres 5144 |
. . . . . . . 8
⊢ (Fun F → Fun (F
↾ B)) |
16 | 14, 15 | syl 15 |
. . . . . . 7
⊢ (F Fn dom F
→ Fun (F ↾ B)) |
17 | | dmres 4987 |
. . . . . . 7
⊢ dom (F ↾ B) = (B ∩
dom F) |
18 | 16, 17 | jctir 524 |
. . . . . 6
⊢ (F Fn dom F
→ (Fun (F ↾ B) ∧ dom (F ↾ B) =
(B ∩ dom F))) |
19 | | df-fn 4791 |
. . . . . 6
⊢ ((F ↾ B) Fn (B ∩
dom F) ↔ (Fun (F ↾ B) ∧ dom (F ↾ B) = (B ∩
dom F))) |
20 | 18, 19 | sylibr 203 |
. . . . 5
⊢ (F Fn dom F
→ (F ↾ B) Fn
(B ∩ dom F)) |
21 | | elpreima 5408 |
. . . . 5
⊢ ((F ↾ B) Fn (B ∩
dom F) → (x ∈ (◡(F ↾ B) “
A) ↔ (x ∈ (B ∩ dom F)
∧ ((F
↾ B)
‘x) ∈ A))) |
22 | 20, 21 | syl 15 |
. . . 4
⊢ (F Fn dom F
→ (x ∈ (◡(F ↾ B) “
A) ↔ (x ∈ (B ∩ dom F)
∧ ((F
↾ B)
‘x) ∈ A))) |
23 | | elin 3220 |
. . . . 5
⊢ (x ∈ ((◡F
“ A) ∩ B) ↔ (x
∈ (◡F
“ A) ∧ x ∈ B)) |
24 | | elpreima 5408 |
. . . . . 6
⊢ (F Fn dom F
→ (x ∈ (◡F
“ A) ↔ (x ∈ dom F ∧ (F ‘x)
∈ A))) |
25 | 24 | anbi1d 685 |
. . . . 5
⊢ (F Fn dom F
→ ((x ∈ (◡F
“ A) ∧ x ∈ B) ↔
((x ∈ dom
F ∧
(F ‘x) ∈ A) ∧ x ∈ B))) |
26 | 23, 25 | syl5bb 248 |
. . . 4
⊢ (F Fn dom F
→ (x ∈ ((◡F
“ A) ∩ B) ↔ ((x
∈ dom F
∧ (F
‘x) ∈ A) ∧ x ∈ B))) |
27 | 13, 22, 26 | 3bitr4d 276 |
. . 3
⊢ (F Fn dom F
→ (x ∈ (◡(F ↾ B) “
A) ↔ x ∈ ((◡F
“ A) ∩ B))) |
28 | 1, 27 | sylbi 187 |
. 2
⊢ (Fun F → (x
∈ (◡(F ↾ B) “
A) ↔ x ∈ ((◡F
“ A) ∩ B))) |
29 | 28 | eqrdv 2351 |
1
⊢ (Fun F → (◡(F ↾ B) “
A) = ((◡F
“ A) ∩ B)) |