NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  foeq2 GIF version

Theorem foeq2 5267
Description: Equality theorem for onto functions. (Contributed by set.mm contributors, 1-Aug-1994.)
Assertion
Ref Expression
foeq2 (A = B → (F:AontoCF:BontoC))

Proof of Theorem foeq2
StepHypRef Expression
1 fneq2 5175 . . 3 (A = B → (F Fn AF Fn B))
21anbi1d 685 . 2 (A = B → ((F Fn A ran F = C) ↔ (F Fn B ran F = C)))
3 df-fo 4794 . 2 (F:AontoC ↔ (F Fn A ran F = C))
4 df-fo 4794 . 2 (F:BontoC ↔ (F Fn B ran F = C))
52, 3, 43bitr4g 279 1 (A = B → (F:AontoCF:BontoC))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642  ran crn 4774   Fn wfn 4777  ontowfo 4780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-fn 4791  df-fo 4794
This theorem is referenced by:  f1oeq2  5283
  Copyright terms: Public domain W3C validator