NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fneq2 GIF version

Theorem fneq2 5175
Description: Equality theorem for function predicate with domain. (Contributed by set.mm contributors, 1-Aug-1994.)
Assertion
Ref Expression
fneq2 (A = B → (F Fn AF Fn B))

Proof of Theorem fneq2
StepHypRef Expression
1 eqeq2 2362 . . 3 (A = B → (dom F = A ↔ dom F = B))
21anbi2d 684 . 2 (A = B → ((Fun F dom F = A) ↔ (Fun F dom F = B)))
3 df-fn 4791 . 2 (F Fn A ↔ (Fun F dom F = A))
4 df-fn 4791 . 2 (F Fn B ↔ (Fun F dom F = B))
52, 3, 43bitr4g 279 1 (A = B → (F Fn AF Fn B))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642  dom cdm 4773  Fun wfun 4776   Fn wfn 4777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-fn 4791
This theorem is referenced by:  fneq2d  5177  fneq2i  5180  feq2  5212  foeq2  5267  f1o00  5318  eqfnfv2  5394  fconstfv  5457  composefn  5819  brfns  5834  fnfullfun  5859
  Copyright terms: Public domain W3C validator