![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > fneq2 | GIF version |
Description: Equality theorem for function predicate with domain. (Contributed by set.mm contributors, 1-Aug-1994.) |
Ref | Expression |
---|---|
fneq2 | ⊢ (A = B → (F Fn A ↔ F Fn B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2362 | . . 3 ⊢ (A = B → (dom F = A ↔ dom F = B)) | |
2 | 1 | anbi2d 684 | . 2 ⊢ (A = B → ((Fun F ∧ dom F = A) ↔ (Fun F ∧ dom F = B))) |
3 | df-fn 4790 | . 2 ⊢ (F Fn A ↔ (Fun F ∧ dom F = A)) | |
4 | df-fn 4790 | . 2 ⊢ (F Fn B ↔ (Fun F ∧ dom F = B)) | |
5 | 2, 3, 4 | 3bitr4g 279 | 1 ⊢ (A = B → (F Fn A ↔ F Fn B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 dom cdm 4772 Fun wfun 4775 Fn wfn 4776 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-fn 4790 |
This theorem is referenced by: fneq2d 5176 fneq2i 5179 feq2 5211 foeq2 5266 f1o00 5317 eqfnfv2 5393 fconstfv 5456 composefn 5818 brfns 5833 fnfullfun 5858 |
Copyright terms: Public domain | W3C validator |