NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  f1oeq2 GIF version

Theorem f1oeq2 5283
Description: Equality theorem for one-to-one onto functions. (Contributed by set.mm contributors, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq2 (A = B → (F:A1-1-ontoCF:B1-1-ontoC))

Proof of Theorem f1oeq2
StepHypRef Expression
1 f1eq2 5255 . . 3 (A = B → (F:A1-1CF:B1-1C))
2 foeq2 5267 . . 3 (A = B → (F:AontoCF:BontoC))
31, 2anbi12d 691 . 2 (A = B → ((F:A1-1C F:AontoC) ↔ (F:B1-1C F:BontoC)))
4 df-f1o 4795 . 2 (F:A1-1-ontoC ↔ (F:A1-1C F:AontoC))
5 df-f1o 4795 . 2 (F:B1-1-ontoC ↔ (F:B1-1C F:BontoC))
63, 4, 53bitr4g 279 1 (A = B → (F:A1-1-ontoCF:B1-1-ontoC))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642  1-1wf1 4779  ontowfo 4780  1-1-ontowf1o 4781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795
This theorem is referenced by:  f1oeq23  5285  resin  5308  f1osng  5324  isoeq4  5486  bren  6031
  Copyright terms: Public domain W3C validator