New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > f1oeq2 | GIF version |
Description: Equality theorem for one-to-one onto functions. (Contributed by set.mm contributors, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1oeq2 | ⊢ (A = B → (F:A–1-1-onto→C ↔ F:B–1-1-onto→C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq2 5255 | . . 3 ⊢ (A = B → (F:A–1-1→C ↔ F:B–1-1→C)) | |
2 | foeq2 5267 | . . 3 ⊢ (A = B → (F:A–onto→C ↔ F:B–onto→C)) | |
3 | 1, 2 | anbi12d 691 | . 2 ⊢ (A = B → ((F:A–1-1→C ∧ F:A–onto→C) ↔ (F:B–1-1→C ∧ F:B–onto→C))) |
4 | df-f1o 4795 | . 2 ⊢ (F:A–1-1-onto→C ↔ (F:A–1-1→C ∧ F:A–onto→C)) | |
5 | df-f1o 4795 | . 2 ⊢ (F:B–1-1-onto→C ↔ (F:B–1-1→C ∧ F:B–onto→C)) | |
6 | 3, 4, 5 | 3bitr4g 279 | 1 ⊢ (A = B → (F:A–1-1-onto→C ↔ F:B–1-1-onto→C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 –1-1→wf1 4779 –onto→wfo 4780 –1-1-onto→wf1o 4781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 |
This theorem is referenced by: f1oeq23 5285 resin 5308 f1osng 5324 isoeq4 5486 bren 6031 |
Copyright terms: Public domain | W3C validator |