New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  dral2-o GIF version

Theorem dral2-o 2181
 Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Version of dral2 1966 using ax-10o 2139. (Contributed by NM, 27-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dral2-o.1 (x x = y → (φψ))
Assertion
Ref Expression
dral2-o (x x = y → (zφzψ))

Proof of Theorem dral2-o
StepHypRef Expression
1 hbae-o 2153 . 2 (x x = yzx x = y)
2 dral2-o.1 . 2 (x x = y → (φψ))
31, 2albidh 1590 1 (x x = y → (zφzψ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176  ∀wal 1540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-7 1734  ax-4 2135  ax-5o 2136  ax-6o 2137  ax-10o 2139  ax-12o 2142 This theorem depends on definitions:  df-bi 177  df-ex 1542 This theorem is referenced by:  ax11eq  2193  ax11el  2194  ax11indalem  2197  ax11inda2ALT  2198
 Copyright terms: Public domain W3C validator