New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dral2-o | GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Version of dral2 1966 using ax-10o 2139. (Contributed by NM, 27-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dral2-o.1 | ⊢ (∀x x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
dral2-o | ⊢ (∀x x = y → (∀zφ ↔ ∀zψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbae-o 2153 | . 2 ⊢ (∀x x = y → ∀z∀x x = y) | |
2 | dral2-o.1 | . 2 ⊢ (∀x x = y → (φ ↔ ψ)) | |
3 | 1, 2 | albidh 1590 | 1 ⊢ (∀x x = y → (∀zφ ↔ ∀zψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-7 1734 ax-4 2135 ax-5o 2136 ax-6o 2137 ax-10o 2139 ax-12o 2142 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: ax11eq 2193 ax11el 2194 ax11indalem 2197 ax11inda2ALT 2198 |
Copyright terms: Public domain | W3C validator |