NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  clelsb2 GIF version

Theorem clelsb2 2456
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2104). (Contributed by Jim Kingdon, 22-Nov-2018.)
Assertion
Ref Expression
clelsb2 ([y / x]A xA y)
Distinct variable group:   x,A
Allowed substitution hint:   A(y)

Proof of Theorem clelsb2
Dummy variable w is distinct from all other variables.
StepHypRef Expression
1 nfv 1619 . . 3 x A w
21sbco2 2086 . 2 ([y / x][x / w]A w ↔ [y / w]A w)
3 nfv 1619 . . . 4 w A x
4 eleq2 2414 . . . 4 (w = x → (A wA x))
53, 4sbie 2038 . . 3 ([x / w]A wA x)
65sbbii 1653 . 2 ([y / x][x / w]A w ↔ [y / x]A x)
7 nfv 1619 . . 3 w A y
8 eleq2 2414 . . 3 (w = y → (A wA y))
97, 8sbie 2038 . 2 ([y / w]A wA y)
102, 6, 93bitr3i 266 1 ([y / x]A xA y)
Colors of variables: wff setvar class
Syntax hints:  wb 176  [wsb 1648   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator