New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > clelsb2 | GIF version |
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2104). (Contributed by Jim Kingdon, 22-Nov-2018.) |
Ref | Expression |
---|---|
clelsb2 | ⊢ ([y / x]A ∈ x ↔ A ∈ y) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . 3 ⊢ Ⅎx A ∈ w | |
2 | 1 | sbco2 2086 | . 2 ⊢ ([y / x][x / w]A ∈ w ↔ [y / w]A ∈ w) |
3 | nfv 1619 | . . . 4 ⊢ Ⅎw A ∈ x | |
4 | eleq2 2414 | . . . 4 ⊢ (w = x → (A ∈ w ↔ A ∈ x)) | |
5 | 3, 4 | sbie 2038 | . . 3 ⊢ ([x / w]A ∈ w ↔ A ∈ x) |
6 | 5 | sbbii 1653 | . 2 ⊢ ([y / x][x / w]A ∈ w ↔ [y / x]A ∈ x) |
7 | nfv 1619 | . . 3 ⊢ Ⅎw A ∈ y | |
8 | eleq2 2414 | . . 3 ⊢ (w = y → (A ∈ w ↔ A ∈ y)) | |
9 | 7, 8 | sbie 2038 | . 2 ⊢ ([y / w]A ∈ w ↔ A ∈ y) |
10 | 2, 6, 9 | 3bitr3i 266 | 1 ⊢ ([y / x]A ∈ x ↔ A ∈ y) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 [wsb 1648 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |