| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ifbieq12d | GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifbieq12d.1 | ⊢ (φ → (ψ ↔ χ)) |
| ifbieq12d.2 | ⊢ (φ → A = C) |
| ifbieq12d.3 | ⊢ (φ → B = D) |
| Ref | Expression |
|---|---|
| ifbieq12d | ⊢ (φ → if(ψ, A, B) = if(χ, C, D)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12d.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
| 2 | 1 | ifbid 3681 | . 2 ⊢ (φ → if(ψ, A, B) = if(χ, A, B)) |
| 3 | ifbieq12d.2 | . . 3 ⊢ (φ → A = C) | |
| 4 | ifbieq12d.3 | . . 3 ⊢ (φ → B = D) | |
| 5 | 3, 4 | ifeq12d 3679 | . 2 ⊢ (φ → if(χ, A, B) = if(χ, C, D)) |
| 6 | 2, 5 | eqtrd 2385 | 1 ⊢ (φ → if(ψ, A, B) = if(χ, C, D)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ifcif 3663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-if 3664 |
| This theorem is referenced by: csbifg 3691 phi11lem1 4596 |
| Copyright terms: Public domain | W3C validator |