NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  inres GIF version

Theorem inres 4986
Description: Move intersection into class restriction. (Contributed by set.mm contributors, 18-Dec-2008.)
Assertion
Ref Expression
inres (A ∩ (B C)) = ((AB) C)

Proof of Theorem inres
StepHypRef Expression
1 inass 3466 . 2 ((AB) ∩ (C × V)) = (A ∩ (B ∩ (C × V)))
2 df-res 4789 . 2 ((AB) C) = ((AB) ∩ (C × V))
3 df-res 4789 . . 3 (B C) = (B ∩ (C × V))
43ineq2i 3455 . 2 (A ∩ (B C)) = (A ∩ (B ∩ (C × V)))
51, 2, 43eqtr4ri 2384 1 (A ∩ (B C)) = ((AB) C)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  Vcvv 2860  cin 3209   × cxp 4771   cres 4775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-res 4789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator