New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3eqtr4ri | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ A = B |
3eqtr4i.2 | ⊢ C = A |
3eqtr4i.3 | ⊢ D = B |
Ref | Expression |
---|---|
3eqtr4ri | ⊢ D = C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.3 | . . 3 ⊢ D = B | |
2 | 3eqtr4i.1 | . . 3 ⊢ A = B | |
3 | 1, 2 | eqtr4i 2376 | . 2 ⊢ D = A |
4 | 3eqtr4i.2 | . 2 ⊢ C = A | |
5 | 3, 4 | eqtr4i 2376 | 1 ⊢ D = C |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: cbvreucsf 3201 dfin3 3495 dfin5 3546 dfif6 3666 qdass 3820 tpidm12 3822 ssfin 4471 nnadjoin 4521 nulnnn 4557 df1st2 4739 dfsset2 4744 dfco1 4749 dfsi2 4752 resres 4981 inres 4986 cnvun 5034 coundi 5083 coundir 5084 snec 5988 df0c2 6138 1cnc 6140 1p1e2c 6156 2p1e3c 6157 |
Copyright terms: Public domain | W3C validator |