New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfiso | GIF version |
Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfiso.1 | ⊢ ℲxH |
nfiso.2 | ⊢ ℲxR |
nfiso.3 | ⊢ ℲxS |
nfiso.4 | ⊢ ℲxA |
nfiso.5 | ⊢ ℲxB |
Ref | Expression |
---|---|
nfiso | ⊢ Ⅎx H Isom R, S (A, B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iso 4797 | . 2 ⊢ (H Isom R, S (A, B) ↔ (H:A–1-1-onto→B ∧ ∀y ∈ A ∀z ∈ A (yRz ↔ (H ‘y)S(H ‘z)))) | |
2 | nfiso.1 | . . . 4 ⊢ ℲxH | |
3 | nfiso.4 | . . . 4 ⊢ ℲxA | |
4 | nfiso.5 | . . . 4 ⊢ ℲxB | |
5 | 2, 3, 4 | nff1o 5286 | . . 3 ⊢ Ⅎx H:A–1-1-onto→B |
6 | nfcv 2490 | . . . . . . 7 ⊢ Ⅎxy | |
7 | nfiso.2 | . . . . . . 7 ⊢ ℲxR | |
8 | nfcv 2490 | . . . . . . 7 ⊢ Ⅎxz | |
9 | 6, 7, 8 | nfbr 4684 | . . . . . 6 ⊢ Ⅎx yRz |
10 | 2, 6 | nffv 5335 | . . . . . . 7 ⊢ Ⅎx(H ‘y) |
11 | nfiso.3 | . . . . . . 7 ⊢ ℲxS | |
12 | 2, 8 | nffv 5335 | . . . . . . 7 ⊢ Ⅎx(H ‘z) |
13 | 10, 11, 12 | nfbr 4684 | . . . . . 6 ⊢ Ⅎx(H ‘y)S(H ‘z) |
14 | 9, 13 | nfbi 1834 | . . . . 5 ⊢ Ⅎx(yRz ↔ (H ‘y)S(H ‘z)) |
15 | 3, 14 | nfral 2668 | . . . 4 ⊢ Ⅎx∀z ∈ A (yRz ↔ (H ‘y)S(H ‘z)) |
16 | 3, 15 | nfral 2668 | . . 3 ⊢ Ⅎx∀y ∈ A ∀z ∈ A (yRz ↔ (H ‘y)S(H ‘z)) |
17 | 5, 16 | nfan 1824 | . 2 ⊢ Ⅎx(H:A–1-1-onto→B ∧ ∀y ∈ A ∀z ∈ A (yRz ↔ (H ‘y)S(H ‘z))) |
18 | 1, 17 | nfxfr 1570 | 1 ⊢ Ⅎx H Isom R, S (A, B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 Ⅎwnf 1544 Ⅎwnfc 2477 ∀wral 2615 class class class wbr 4640 –1-1-onto→wf1o 4781 ‘cfv 4782 Isom wiso 4783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-iso 4797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |