NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  isorel GIF version

Theorem isorel 5490
Description: An isomorphism connects binary relations via its function values. (Contributed by set.mm contributors, 27-Apr-2004.)
Assertion
Ref Expression
isorel ((H Isom R, S (A, B) (C A D A)) → (CRD ↔ (HC)S(HD)))

Proof of Theorem isorel
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iso 4797 . . 3 (H Isom R, S (A, B) ↔ (H:A1-1-ontoB x A y A (xRy ↔ (Hx)S(Hy))))
21simprbi 450 . 2 (H Isom R, S (A, B) → x A y A (xRy ↔ (Hx)S(Hy)))
3 breq1 4643 . . . 4 (x = C → (xRyCRy))
4 fveq2 5329 . . . . 5 (x = C → (Hx) = (HC))
54breq1d 4650 . . . 4 (x = C → ((Hx)S(Hy) ↔ (HC)S(Hy)))
63, 5bibi12d 312 . . 3 (x = C → ((xRy ↔ (Hx)S(Hy)) ↔ (CRy ↔ (HC)S(Hy))))
7 breq2 4644 . . . 4 (y = D → (CRyCRD))
8 fveq2 5329 . . . . 5 (y = D → (Hy) = (HD))
98breq2d 4652 . . . 4 (y = D → ((HC)S(Hy) ↔ (HC)S(HD)))
107, 9bibi12d 312 . . 3 (y = D → ((CRy ↔ (HC)S(Hy)) ↔ (CRD ↔ (HC)S(HD))))
116, 10rspc2v 2962 . 2 ((C A D A) → (x A y A (xRy ↔ (Hx)S(Hy)) → (CRD ↔ (HC)S(HD))))
122, 11mpan9 455 1 ((H Isom R, S (A, B) (C A D A)) → (CRD ↔ (HC)S(HD)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  wral 2615   class class class wbr 4640  1-1-ontowf1o 4781  cfv 4782   Isom wiso 4783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-br 4641  df-fv 4796  df-iso 4797
This theorem is referenced by:  isomin  5497  isoini  5498
  Copyright terms: Public domain W3C validator