New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > isorel | GIF version |
Description: An isomorphism connects binary relations via its function values. (Contributed by set.mm contributors, 27-Apr-2004.) |
Ref | Expression |
---|---|
isorel | ⊢ ((H Isom R, S (A, B) ∧ (C ∈ A ∧ D ∈ A)) → (CRD ↔ (H ‘C)S(H ‘D))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iso 4797 | . . 3 ⊢ (H Isom R, S (A, B) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)))) | |
2 | 1 | simprbi 450 | . 2 ⊢ (H Isom R, S (A, B) → ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y))) |
3 | breq1 4643 | . . . 4 ⊢ (x = C → (xRy ↔ CRy)) | |
4 | fveq2 5329 | . . . . 5 ⊢ (x = C → (H ‘x) = (H ‘C)) | |
5 | 4 | breq1d 4650 | . . . 4 ⊢ (x = C → ((H ‘x)S(H ‘y) ↔ (H ‘C)S(H ‘y))) |
6 | 3, 5 | bibi12d 312 | . . 3 ⊢ (x = C → ((xRy ↔ (H ‘x)S(H ‘y)) ↔ (CRy ↔ (H ‘C)S(H ‘y)))) |
7 | breq2 4644 | . . . 4 ⊢ (y = D → (CRy ↔ CRD)) | |
8 | fveq2 5329 | . . . . 5 ⊢ (y = D → (H ‘y) = (H ‘D)) | |
9 | 8 | breq2d 4652 | . . . 4 ⊢ (y = D → ((H ‘C)S(H ‘y) ↔ (H ‘C)S(H ‘D))) |
10 | 7, 9 | bibi12d 312 | . . 3 ⊢ (y = D → ((CRy ↔ (H ‘C)S(H ‘y)) ↔ (CRD ↔ (H ‘C)S(H ‘D)))) |
11 | 6, 10 | rspc2v 2962 | . 2 ⊢ ((C ∈ A ∧ D ∈ A) → (∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)) → (CRD ↔ (H ‘C)S(H ‘D)))) |
12 | 2, 11 | mpan9 455 | 1 ⊢ ((H Isom R, S (A, B) ∧ (C ∈ A ∧ D ∈ A)) → (CRD ↔ (H ‘C)S(H ‘D))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∀wral 2615 class class class wbr 4640 –1-1-onto→wf1o 4781 ‘cfv 4782 Isom wiso 4783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-fv 4796 df-iso 4797 |
This theorem is referenced by: isomin 5497 isoini 5498 |
Copyright terms: Public domain | W3C validator |