New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralrimiva | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Jan-2006.) |
Ref | Expression |
---|---|
ralrimiva.1 | ⊢ ((φ ∧ x ∈ A) → ψ) |
Ref | Expression |
---|---|
ralrimiva | ⊢ (φ → ∀x ∈ A ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimiva.1 | . . 3 ⊢ ((φ ∧ x ∈ A) → ψ) | |
2 | 1 | ex 423 | . 2 ⊢ (φ → (x ∈ A → ψ)) |
3 | 2 | ralrimiv 2697 | 1 ⊢ (φ → ∀x ∈ A ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 |
This theorem is referenced by: ralrimivvva 2708 rgen2 2711 rgen3 2712 nrexdv 2718 rabbidva 2851 ssrabdv 3346 ss2rabdv 3348 rgenz 3656 iuneq2dv 3991 ssofss 4077 findsd 4411 evenodddisj 4517 tfinnn 4535 vfinspss 4552 vfinspclt 4553 fun11iun 5306 eqfnfvd 5396 dff3 5421 dffo4 5424 foco2 5427 ffnfv 5428 ffvresb 5432 fconst2g 5453 fconstfv 5457 fmptd 5695 f1od 5727 extd 5924 refrd 5927 enmap2lem5 6068 enmap1lem5 6074 spacis 6289 nchoicelem12 6301 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |