Step | Hyp | Ref
| Expression |
1 | | eliun 3974 |
. . . . . . . 8
⊢ (x ∈ ∪y ∈ A B ↔ ∃y ∈ A x ∈ B) |
2 | 1 | anbi1i 676 |
. . . . . . 7
⊢ ((x ∈ ∪y ∈ A B ∧ z ∈ C) ↔ (∃y ∈ A x ∈ B ∧ z ∈ C)) |
3 | | r19.41v 2765 |
. . . . . . 7
⊢ (∃y ∈ A (x ∈ B ∧ z ∈ C) ↔ (∃y ∈ A x ∈ B ∧ z ∈ C)) |
4 | 2, 3 | bitr4i 243 |
. . . . . 6
⊢ ((x ∈ ∪y ∈ A B ∧ z ∈ C) ↔ ∃y ∈ A (x ∈ B ∧ z ∈ C)) |
5 | 4 | exbii 1582 |
. . . . 5
⊢ (∃x(x ∈ ∪y ∈ A B ∧ z ∈ C) ↔ ∃x∃y ∈ A (x ∈ B ∧ z ∈ C)) |
6 | | rexcom4 2879 |
. . . . 5
⊢ (∃y ∈ A ∃x(x ∈ B ∧ z ∈ C) ↔ ∃x∃y ∈ A (x ∈ B ∧ z ∈ C)) |
7 | 5, 6 | bitr4i 243 |
. . . 4
⊢ (∃x(x ∈ ∪y ∈ A B ∧ z ∈ C) ↔ ∃y ∈ A ∃x(x ∈ B ∧ z ∈ C)) |
8 | | df-rex 2621 |
. . . 4
⊢ (∃x ∈ ∪ y ∈ A Bz ∈ C ↔ ∃x(x ∈ ∪y ∈ A B ∧ z ∈ C)) |
9 | | eliun 3974 |
. . . . . 6
⊢ (z ∈ ∪x ∈ B C ↔ ∃x ∈ B z ∈ C) |
10 | | df-rex 2621 |
. . . . . 6
⊢ (∃x ∈ B z ∈ C ↔ ∃x(x ∈ B ∧ z ∈ C)) |
11 | 9, 10 | bitri 240 |
. . . . 5
⊢ (z ∈ ∪x ∈ B C ↔ ∃x(x ∈ B ∧ z ∈ C)) |
12 | 11 | rexbii 2640 |
. . . 4
⊢ (∃y ∈ A z ∈ ∪x ∈ B C ↔ ∃y ∈ A ∃x(x ∈ B ∧ z ∈ C)) |
13 | 7, 8, 12 | 3bitr4i 268 |
. . 3
⊢ (∃x ∈ ∪ y ∈ A Bz ∈ C ↔ ∃y ∈ A z ∈ ∪x ∈ B C) |
14 | | eliun 3974 |
. . 3
⊢ (z ∈ ∪x ∈ ∪ y ∈ A BC ↔ ∃x ∈ ∪ y ∈ A Bz ∈ C) |
15 | | eliun 3974 |
. . 3
⊢ (z ∈ ∪y ∈ A ∪x ∈ B C ↔ ∃y ∈ A z ∈ ∪x ∈ B C) |
16 | 13, 14, 15 | 3bitr4i 268 |
. 2
⊢ (z ∈ ∪x ∈ ∪ y ∈ A BC ↔ z ∈ ∪y ∈ A ∪x ∈ B C) |
17 | 16 | eqriv 2350 |
1
⊢ ∪x ∈ ∪ y ∈ A BC = ∪y ∈ A ∪x ∈ B C |