New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexcom4 | GIF version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rexcom4 | ⊢ (∃x ∈ A ∃yφ ↔ ∃y∃x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom 2773 | . 2 ⊢ (∃x ∈ A ∃y ∈ V φ ↔ ∃y ∈ V ∃x ∈ A φ) | |
2 | rexv 2874 | . . 3 ⊢ (∃y ∈ V φ ↔ ∃yφ) | |
3 | 2 | rexbii 2640 | . 2 ⊢ (∃x ∈ A ∃y ∈ V φ ↔ ∃x ∈ A ∃yφ) |
4 | rexv 2874 | . 2 ⊢ (∃y ∈ V ∃x ∈ A φ ↔ ∃y∃x ∈ A φ) | |
5 | 1, 3, 4 | 3bitr3i 266 | 1 ⊢ (∃x ∈ A ∃yφ ↔ ∃y∃x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∃wex 1541 ∃wrex 2616 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 |
This theorem is referenced by: rexcom4a 2880 reuind 3040 uni0b 3917 iuncom4 3977 dfiun2g 4000 iunn0 4027 iunxiun 4049 elpw12 4146 imacok 4283 unipw1 4326 dfaddc2 4382 addcass 4416 ltfinex 4465 ncfinlowerlem1 4483 nnpweqlem1 4523 vfinspss 4552 vfinncsp 4555 setconslem6 4737 xpiundi 4818 xpiundir 4819 cnvuni 4896 elimapw1 4945 elimapw12 4946 elimapw13 4947 elsnres 4997 imaco 5087 coiun 5091 fun11iun 5306 abrexco 5464 imaiun 5465 isomin 5497 dfdm4 5508 dfrn5 5509 xpassen 6058 enpw1pw 6076 |
Copyright terms: Public domain | W3C validator |