New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqriv | GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqriv.1 | ⊢ (x ∈ A ↔ x ∈ B) |
Ref | Expression |
---|---|
eqriv | ⊢ A = B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2347 | . 2 ⊢ (A = B ↔ ∀x(x ∈ A ↔ x ∈ B)) | |
2 | eqriv.1 | . 2 ⊢ (x ∈ A ↔ x ∈ B) | |
3 | 1, 2 | mpgbir 1550 | 1 ⊢ A = B |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-cleq 2346 |
This theorem is referenced by: eqid 2353 cbvab 2472 vjust 2861 nincom 3227 dblcompl 3228 difeqri 3388 uneqri 3407 incom 3449 ineqri 3450 indifdir 3512 undif3 3516 complab 3525 pwpr 3884 pwtp 3885 pwv 3887 unipr 3906 uniun 3911 intun 3959 intpr 3960 iuncom 3976 iuncom4 3977 iun0 4023 0iun 4024 iunin2 4031 iinun2 4033 iundif2 4034 iunun 4047 iunxun 4048 iunxiun 4049 iinuni 4050 iinpw 4055 unipw 4118 pwadjoin 4120 pw1un 4164 pw1in 4165 pw1sn 4166 df1c2 4169 imacok 4283 dfuni12 4292 dfimak2 4299 dfpw12 4302 dfuni3 4316 dfint3 4319 unipw1 4326 dfpw2 4328 addcid1 4406 addcass 4416 dfphi2 4570 proj1op 4601 proj2op 4602 setconslem4 4735 dfswap2 4742 xpiundi 4818 xpiundir 4819 iunxpf 4830 xp0r 4843 cnvuni 4896 dfrn4 4905 dmuni 4915 dfima3 4952 rnuni 5039 dmsnopg 5067 rnsnop 5076 cnvresima 5078 imaco 5087 rnco 5088 dfxp2 5114 imaiun 5465 dfdm4 5508 dfrn5 5509 dmsi 5520 dmtxp 5803 clos1baseima 5884 qsid 5991 mapval2 6019 |
Copyright terms: Public domain | W3C validator |