New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.41v | GIF version |
Description: Restricted quantifier version of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 17-Dec-2003.) |
Ref | Expression |
---|---|
r19.41v | ⊢ (∃x ∈ A (φ ∧ ψ) ↔ (∃x ∈ A φ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
2 | 1 | r19.41 2764 | 1 ⊢ (∃x ∈ A (φ ∧ ψ) ↔ (∃x ∈ A φ ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-rex 2621 |
This theorem is referenced by: r19.42v 2766 3reeanv 2780 reuind 3040 iuncom4 3977 dfiun2g 4000 iunxiun 4049 elpw12 4146 pw1in 4165 imacok 4283 unipw1 4326 dfaddc2 4382 addcass 4416 ltfinex 4465 ncfinlowerlem1 4483 dfevenfin2 4513 dfoddfin2 4514 nnpweqlem1 4523 vfinspss 4552 vfinncsp 4555 phialllem1 4617 setconslem6 4737 xpiundi 4818 xpiundir 4819 elimapw1 4945 elimapw12 4946 elimapw13 4947 imaco 5087 coiun 5091 abrexco 5464 imaiun 5465 isomin 5497 isoini 5498 xpassen 6058 enpw1pw 6076 |
Copyright terms: Public domain | W3C validator |