NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unss GIF version

Theorem unss 3438
Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.)
Assertion
Ref Expression
unss ((A C B C) ↔ (AB) C)

Proof of Theorem unss
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 dfss2 3263 . 2 ((AB) Cx(x (AB) → x C))
2 19.26 1593 . . 3 (x((x Ax C) (x Bx C)) ↔ (x(x Ax C) x(x Bx C)))
3 elun 3221 . . . . . 6 (x (AB) ↔ (x A x B))
43imbi1i 315 . . . . 5 ((x (AB) → x C) ↔ ((x A x B) → x C))
5 jaob 758 . . . . 5 (((x A x B) → x C) ↔ ((x Ax C) (x Bx C)))
64, 5bitri 240 . . . 4 ((x (AB) → x C) ↔ ((x Ax C) (x Bx C)))
76albii 1566 . . 3 (x(x (AB) → x C) ↔ x((x Ax C) (x Bx C)))
8 dfss2 3263 . . . 4 (A Cx(x Ax C))
9 dfss2 3263 . . . 4 (B Cx(x Bx C))
108, 9anbi12i 678 . . 3 ((A C B C) ↔ (x(x Ax C) x(x Bx C)))
112, 7, 103bitr4i 268 . 2 (x(x (AB) → x C) ↔ (A C B C))
121, 11bitr2i 241 1 ((A C B C) ↔ (AB) C)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wo 357   wa 358  wal 1540   wcel 1710  cun 3208   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-ss 3260
This theorem is referenced by:  unssi  3439  unssd  3440  unssad  3441  unssbd  3442  nsspssun  3489  uneqin  3507  uneqdifeq  3639  prss  3862  prssg  3863  ssunsn2  3866  tpss  3872  evenoddnnnul  4515  nnadjoinpw  4522  tfinnn  4535  vfinspeqtncv  4554  sbthlem1  6204  spacssnc  6285
  Copyright terms: Public domain W3C validator