New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unss | GIF version |
Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
Ref | Expression |
---|---|
unss | ⊢ ((A ⊆ C ∧ B ⊆ C) ↔ (A ∪ B) ⊆ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3262 | . 2 ⊢ ((A ∪ B) ⊆ C ↔ ∀x(x ∈ (A ∪ B) → x ∈ C)) | |
2 | 19.26 1593 | . . 3 ⊢ (∀x((x ∈ A → x ∈ C) ∧ (x ∈ B → x ∈ C)) ↔ (∀x(x ∈ A → x ∈ C) ∧ ∀x(x ∈ B → x ∈ C))) | |
3 | elun 3220 | . . . . . 6 ⊢ (x ∈ (A ∪ B) ↔ (x ∈ A ∨ x ∈ B)) | |
4 | 3 | imbi1i 315 | . . . . 5 ⊢ ((x ∈ (A ∪ B) → x ∈ C) ↔ ((x ∈ A ∨ x ∈ B) → x ∈ C)) |
5 | jaob 758 | . . . . 5 ⊢ (((x ∈ A ∨ x ∈ B) → x ∈ C) ↔ ((x ∈ A → x ∈ C) ∧ (x ∈ B → x ∈ C))) | |
6 | 4, 5 | bitri 240 | . . . 4 ⊢ ((x ∈ (A ∪ B) → x ∈ C) ↔ ((x ∈ A → x ∈ C) ∧ (x ∈ B → x ∈ C))) |
7 | 6 | albii 1566 | . . 3 ⊢ (∀x(x ∈ (A ∪ B) → x ∈ C) ↔ ∀x((x ∈ A → x ∈ C) ∧ (x ∈ B → x ∈ C))) |
8 | dfss2 3262 | . . . 4 ⊢ (A ⊆ C ↔ ∀x(x ∈ A → x ∈ C)) | |
9 | dfss2 3262 | . . . 4 ⊢ (B ⊆ C ↔ ∀x(x ∈ B → x ∈ C)) | |
10 | 8, 9 | anbi12i 678 | . . 3 ⊢ ((A ⊆ C ∧ B ⊆ C) ↔ (∀x(x ∈ A → x ∈ C) ∧ ∀x(x ∈ B → x ∈ C))) |
11 | 2, 7, 10 | 3bitr4i 268 | . 2 ⊢ (∀x(x ∈ (A ∪ B) → x ∈ C) ↔ (A ⊆ C ∧ B ⊆ C)) |
12 | 1, 11 | bitr2i 241 | 1 ⊢ ((A ⊆ C ∧ B ⊆ C) ↔ (A ∪ B) ⊆ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 ∪ cun 3207 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-ss 3259 |
This theorem is referenced by: unssi 3438 unssd 3439 unssad 3440 unssbd 3441 nsspssun 3488 uneqin 3506 uneqdifeq 3638 prss 3861 prssg 3862 ssunsn2 3865 tpss 3871 evenoddnnnul 4514 nnadjoinpw 4521 tfinnn 4534 vfinspeqtncv 4553 sbthlem1 6203 spacssnc 6284 |
Copyright terms: Public domain | W3C validator |