New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unss | GIF version |
Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
Ref | Expression |
---|---|
unss | ⊢ ((A ⊆ C ∧ B ⊆ C) ↔ (A ∪ B) ⊆ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3263 | . 2 ⊢ ((A ∪ B) ⊆ C ↔ ∀x(x ∈ (A ∪ B) → x ∈ C)) | |
2 | 19.26 1593 | . . 3 ⊢ (∀x((x ∈ A → x ∈ C) ∧ (x ∈ B → x ∈ C)) ↔ (∀x(x ∈ A → x ∈ C) ∧ ∀x(x ∈ B → x ∈ C))) | |
3 | elun 3221 | . . . . . 6 ⊢ (x ∈ (A ∪ B) ↔ (x ∈ A ∨ x ∈ B)) | |
4 | 3 | imbi1i 315 | . . . . 5 ⊢ ((x ∈ (A ∪ B) → x ∈ C) ↔ ((x ∈ A ∨ x ∈ B) → x ∈ C)) |
5 | jaob 758 | . . . . 5 ⊢ (((x ∈ A ∨ x ∈ B) → x ∈ C) ↔ ((x ∈ A → x ∈ C) ∧ (x ∈ B → x ∈ C))) | |
6 | 4, 5 | bitri 240 | . . . 4 ⊢ ((x ∈ (A ∪ B) → x ∈ C) ↔ ((x ∈ A → x ∈ C) ∧ (x ∈ B → x ∈ C))) |
7 | 6 | albii 1566 | . . 3 ⊢ (∀x(x ∈ (A ∪ B) → x ∈ C) ↔ ∀x((x ∈ A → x ∈ C) ∧ (x ∈ B → x ∈ C))) |
8 | dfss2 3263 | . . . 4 ⊢ (A ⊆ C ↔ ∀x(x ∈ A → x ∈ C)) | |
9 | dfss2 3263 | . . . 4 ⊢ (B ⊆ C ↔ ∀x(x ∈ B → x ∈ C)) | |
10 | 8, 9 | anbi12i 678 | . . 3 ⊢ ((A ⊆ C ∧ B ⊆ C) ↔ (∀x(x ∈ A → x ∈ C) ∧ ∀x(x ∈ B → x ∈ C))) |
11 | 2, 7, 10 | 3bitr4i 268 | . 2 ⊢ (∀x(x ∈ (A ∪ B) → x ∈ C) ↔ (A ⊆ C ∧ B ⊆ C)) |
12 | 1, 11 | bitr2i 241 | 1 ⊢ ((A ⊆ C ∧ B ⊆ C) ↔ (A ∪ B) ⊆ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 ∪ cun 3208 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 |
This theorem is referenced by: unssi 3439 unssd 3440 unssad 3441 unssbd 3442 nsspssun 3489 uneqin 3507 uneqdifeq 3639 prss 3862 prssg 3863 ssunsn2 3866 tpss 3872 evenoddnnnul 4515 nnadjoinpw 4522 tfinnn 4535 vfinspeqtncv 4554 sbthlem1 6204 spacssnc 6285 |
Copyright terms: Public domain | W3C validator |