Step | Hyp | Ref
| Expression |
1 | | 19.26 1593 |
. . . 4
⊢ (∀y((y = A →
x ∈
y) ∧
(y = B
→ x ∈ y)) ↔
(∀y(y = A → x ∈ y) ∧ ∀y(y = B → x ∈ y))) |
2 | | vex 2863 |
. . . . . . . 8
⊢ y ∈
V |
3 | 2 | elpr 3752 |
. . . . . . 7
⊢ (y ∈ {A, B} ↔
(y = A
∨ y =
B)) |
4 | 3 | imbi1i 315 |
. . . . . 6
⊢ ((y ∈ {A, B} →
x ∈
y) ↔ ((y = A ∨ y = B) → x
∈ y)) |
5 | | jaob 758 |
. . . . . 6
⊢ (((y = A ∨ y = B) → x
∈ y)
↔ ((y = A → x ∈ y) ∧ (y = B → x ∈ y))) |
6 | 4, 5 | bitri 240 |
. . . . 5
⊢ ((y ∈ {A, B} →
x ∈
y) ↔ ((y = A →
x ∈
y) ∧
(y = B
→ x ∈ y))) |
7 | 6 | albii 1566 |
. . . 4
⊢ (∀y(y ∈ {A, B} →
x ∈
y) ↔ ∀y((y = A →
x ∈
y) ∧
(y = B
→ x ∈ y))) |
8 | | intpr.1 |
. . . . . 6
⊢ A ∈
V |
9 | 8 | clel4 2979 |
. . . . 5
⊢ (x ∈ A ↔ ∀y(y = A →
x ∈
y)) |
10 | | intpr.2 |
. . . . . 6
⊢ B ∈
V |
11 | 10 | clel4 2979 |
. . . . 5
⊢ (x ∈ B ↔ ∀y(y = B →
x ∈
y)) |
12 | 9, 11 | anbi12i 678 |
. . . 4
⊢ ((x ∈ A ∧ x ∈ B) ↔ (∀y(y = A →
x ∈
y) ∧ ∀y(y = B →
x ∈
y))) |
13 | 1, 7, 12 | 3bitr4i 268 |
. . 3
⊢ (∀y(y ∈ {A, B} →
x ∈
y) ↔ (x ∈ A ∧ x ∈ B)) |
14 | | vex 2863 |
. . . 4
⊢ x ∈
V |
15 | 14 | elint 3933 |
. . 3
⊢ (x ∈ ∩{A, B} ↔ ∀y(y ∈ {A, B} →
x ∈
y)) |
16 | | elin 3220 |
. . 3
⊢ (x ∈ (A ∩ B)
↔ (x ∈ A ∧ x ∈ B)) |
17 | 13, 15, 16 | 3bitr4i 268 |
. 2
⊢ (x ∈ ∩{A, B} ↔ x
∈ (A
∩ B)) |
18 | 17 | eqriv 2350 |
1
⊢ ∩{A, B} = (A ∩
B) |