New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > keephyp2v | GIF version |
Description: Keep a hypothesis containing 2 class variables (for use with the weak deduction theorem dedth 3704). (Contributed by NM, 16-Apr-2005.) |
Ref | Expression |
---|---|
keephyp2v.1 | ⊢ (A = if(φ, A, C) → (ψ ↔ χ)) |
keephyp2v.2 | ⊢ (B = if(φ, B, D) → (χ ↔ θ)) |
keephyp2v.3 | ⊢ (C = if(φ, A, C) → (τ ↔ η)) |
keephyp2v.4 | ⊢ (D = if(φ, B, D) → (η ↔ θ)) |
keephyp2v.5 | ⊢ ψ |
keephyp2v.6 | ⊢ τ |
Ref | Expression |
---|---|
keephyp2v | ⊢ θ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | keephyp2v.5 | . . 3 ⊢ ψ | |
2 | iftrue 3669 | . . . . . 6 ⊢ (φ → if(φ, A, C) = A) | |
3 | 2 | eqcomd 2358 | . . . . 5 ⊢ (φ → A = if(φ, A, C)) |
4 | keephyp2v.1 | . . . . 5 ⊢ (A = if(φ, A, C) → (ψ ↔ χ)) | |
5 | 3, 4 | syl 15 | . . . 4 ⊢ (φ → (ψ ↔ χ)) |
6 | iftrue 3669 | . . . . . 6 ⊢ (φ → if(φ, B, D) = B) | |
7 | 6 | eqcomd 2358 | . . . . 5 ⊢ (φ → B = if(φ, B, D)) |
8 | keephyp2v.2 | . . . . 5 ⊢ (B = if(φ, B, D) → (χ ↔ θ)) | |
9 | 7, 8 | syl 15 | . . . 4 ⊢ (φ → (χ ↔ θ)) |
10 | 5, 9 | bitrd 244 | . . 3 ⊢ (φ → (ψ ↔ θ)) |
11 | 1, 10 | mpbii 202 | . 2 ⊢ (φ → θ) |
12 | keephyp2v.6 | . . 3 ⊢ τ | |
13 | iffalse 3670 | . . . . . 6 ⊢ (¬ φ → if(φ, A, C) = C) | |
14 | 13 | eqcomd 2358 | . . . . 5 ⊢ (¬ φ → C = if(φ, A, C)) |
15 | keephyp2v.3 | . . . . 5 ⊢ (C = if(φ, A, C) → (τ ↔ η)) | |
16 | 14, 15 | syl 15 | . . . 4 ⊢ (¬ φ → (τ ↔ η)) |
17 | iffalse 3670 | . . . . . 6 ⊢ (¬ φ → if(φ, B, D) = D) | |
18 | 17 | eqcomd 2358 | . . . . 5 ⊢ (¬ φ → D = if(φ, B, D)) |
19 | keephyp2v.4 | . . . . 5 ⊢ (D = if(φ, B, D) → (η ↔ θ)) | |
20 | 18, 19 | syl 15 | . . . 4 ⊢ (¬ φ → (η ↔ θ)) |
21 | 16, 20 | bitrd 244 | . . 3 ⊢ (¬ φ → (τ ↔ θ)) |
22 | 12, 21 | mpbii 202 | . 2 ⊢ (¬ φ → θ) |
23 | 11, 22 | pm2.61i 156 | 1 ⊢ θ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 = wceq 1642 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |