![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > mpbii | GIF version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbii.min | ⊢ ψ |
mpbii.maj | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
mpbii | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbii.min | . . 3 ⊢ ψ | |
2 | 1 | a1i 10 | . 2 ⊢ (φ → ψ) |
3 | mpbii.maj | . 2 ⊢ (φ → (ψ ↔ χ)) | |
4 | 2, 3 | mpbid 201 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: elimh 922 ax11v2 1992 sbft 2025 ax11vALT 2097 ax11eq 2193 ax11el 2194 ax11inda 2200 ax11v2-o 2201 vtoclgf 2913 eueq3 3011 moeq3 3013 mo2icl 3015 sbc2or 3054 csbiegf 3176 un00 3586 elimhyp 3710 elimhyp2v 3711 elimhyp3v 3712 elimhyp4v 3713 elimdhyp 3715 keephyp2v 3717 keephyp3v 3718 sneqr 3872 unsneqsn 3887 preqr1 4124 preq12b 4127 lefinlteq 4463 proj2op 4601 nfopd 4605 phiall 4618 nfimad 4954 cnvresid 5166 nffvd 5335 tz6.12i 5348 fvelrnb 5365 fvelimab 5370 funfvop 5400 opbr1st 5501 opbr2nd 5502 bren 6030 idssen 6040 enadj 6060 ncvsq 6256 |
Copyright terms: Public domain | W3C validator |