New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpbii | GIF version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbii.min | ⊢ ψ |
mpbii.maj | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
mpbii | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbii.min | . . 3 ⊢ ψ | |
2 | 1 | a1i 10 | . 2 ⊢ (φ → ψ) |
3 | mpbii.maj | . 2 ⊢ (φ → (ψ ↔ χ)) | |
4 | 2, 3 | mpbid 201 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: elimh 922 ax11v2 1992 sbft 2025 ax11vALT 2097 ax11eq 2193 ax11el 2194 ax11inda 2200 ax11v2-o 2201 vtoclgf 2914 eueq3 3012 moeq3 3014 mo2icl 3016 sbc2or 3055 csbiegf 3177 un00 3587 elimhyp 3711 elimhyp2v 3712 elimhyp3v 3713 elimhyp4v 3714 elimdhyp 3716 keephyp2v 3718 keephyp3v 3719 sneqr 3873 unsneqsn 3888 preqr1 4125 preq12b 4128 lefinlteq 4464 proj2op 4602 nfopd 4606 phiall 4619 nfimad 4955 cnvresid 5167 nffvd 5336 tz6.12i 5349 fvelrnb 5366 fvelimab 5371 funfvop 5401 opbr1st 5502 opbr2nd 5503 bren 6031 idssen 6041 enadj 6061 ncvsq 6257 |
Copyright terms: Public domain | W3C validator |