New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mo2 | GIF version |
Description: Alternate definition of "at most one." (Contributed by NM, 8-Mar-1995.) |
Ref | Expression |
---|---|
mo2.1 | ⊢ Ⅎyφ |
Ref | Expression |
---|---|
mo2 | ⊢ (∃*xφ ↔ ∃y∀x(φ → x = y)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2209 | . 2 ⊢ (∃*xφ ↔ (∃xφ → ∃!xφ)) | |
2 | alnex 1543 | . . . . 5 ⊢ (∀x ¬ φ ↔ ¬ ∃xφ) | |
3 | pm2.21 100 | . . . . . . 7 ⊢ (¬ φ → (φ → x = y)) | |
4 | 3 | alimi 1559 | . . . . . 6 ⊢ (∀x ¬ φ → ∀x(φ → x = y)) |
5 | 19.8a 1756 | . . . . . 6 ⊢ (∀x(φ → x = y) → ∃y∀x(φ → x = y)) | |
6 | 4, 5 | syl 15 | . . . . 5 ⊢ (∀x ¬ φ → ∃y∀x(φ → x = y)) |
7 | 2, 6 | sylbir 204 | . . . 4 ⊢ (¬ ∃xφ → ∃y∀x(φ → x = y)) |
8 | mo2.1 | . . . . 5 ⊢ Ⅎyφ | |
9 | 8 | eumo0 2228 | . . . 4 ⊢ (∃!xφ → ∃y∀x(φ → x = y)) |
10 | 7, 9 | ja 153 | . . 3 ⊢ ((∃xφ → ∃!xφ) → ∃y∀x(φ → x = y)) |
11 | 8 | eu3 2230 | . . . 4 ⊢ (∃!xφ ↔ (∃xφ ∧ ∃y∀x(φ → x = y))) |
12 | 11 | simplbi2com 1374 | . . 3 ⊢ (∃y∀x(φ → x = y) → (∃xφ → ∃!xφ)) |
13 | 10, 12 | impbii 180 | . 2 ⊢ ((∃xφ → ∃!xφ) ↔ ∃y∀x(φ → x = y)) |
14 | 1, 13 | bitri 240 | 1 ⊢ (∃*xφ ↔ ∃y∀x(φ → x = y)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 ∃!weu 2204 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: sbmo 2234 mo3 2235 eu5 2242 moim 2250 morimv 2252 moanim 2260 mo2icl 3016 rmo2 3132 dffun3 5121 dffun6f 5124 |
Copyright terms: Public domain | W3C validator |