New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ovig | GIF version |
Description: The value of an operation class abstraction (weak version). (Contributed by set.mm contributors, 14-Sep-1999.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
ovig.1 | ⊢ ((x = A ∧ y = B ∧ z = C) → (φ ↔ ψ)) |
ovig.2 | ⊢ ((x ∈ R ∧ y ∈ S) → ∃*zφ) |
ovig.3 | ⊢ F = {〈〈x, y〉, z〉 ∣ ((x ∈ R ∧ y ∈ S) ∧ φ)} |
Ref | Expression |
---|---|
ovig | ⊢ ((A ∈ R ∧ B ∈ S ∧ C ∈ D) → (ψ → (AFB) = C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 952 | . 2 ⊢ ((A ∈ R ∧ B ∈ S ∧ C ∈ D) → (A ∈ R ∧ B ∈ S)) | |
2 | eleq1 2413 | . . . . . 6 ⊢ (x = A → (x ∈ R ↔ A ∈ R)) | |
3 | eleq1 2413 | . . . . . 6 ⊢ (y = B → (y ∈ S ↔ B ∈ S)) | |
4 | 2, 3 | bi2anan9 843 | . . . . 5 ⊢ ((x = A ∧ y = B) → ((x ∈ R ∧ y ∈ S) ↔ (A ∈ R ∧ B ∈ S))) |
5 | 4 | 3adant3 975 | . . . 4 ⊢ ((x = A ∧ y = B ∧ z = C) → ((x ∈ R ∧ y ∈ S) ↔ (A ∈ R ∧ B ∈ S))) |
6 | ovig.1 | . . . 4 ⊢ ((x = A ∧ y = B ∧ z = C) → (φ ↔ ψ)) | |
7 | 5, 6 | anbi12d 691 | . . 3 ⊢ ((x = A ∧ y = B ∧ z = C) → (((x ∈ R ∧ y ∈ S) ∧ φ) ↔ ((A ∈ R ∧ B ∈ S) ∧ ψ))) |
8 | ovig.2 | . . . 4 ⊢ ((x ∈ R ∧ y ∈ S) → ∃*zφ) | |
9 | moanimv 2262 | . . . 4 ⊢ (∃*z((x ∈ R ∧ y ∈ S) ∧ φ) ↔ ((x ∈ R ∧ y ∈ S) → ∃*zφ)) | |
10 | 8, 9 | mpbir 200 | . . 3 ⊢ ∃*z((x ∈ R ∧ y ∈ S) ∧ φ) |
11 | ovig.3 | . . 3 ⊢ F = {〈〈x, y〉, z〉 ∣ ((x ∈ R ∧ y ∈ S) ∧ φ)} | |
12 | 7, 10, 11 | ovigg 5597 | . 2 ⊢ ((A ∈ R ∧ B ∈ S ∧ C ∈ D) → (((A ∈ R ∧ B ∈ S) ∧ ψ) → (AFB) = C)) |
13 | 1, 12 | mpand 656 | 1 ⊢ ((A ∈ R ∧ B ∈ S ∧ C ∈ D) → (ψ → (AFB) = C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ∃*wmo 2205 (class class class)co 5526 {coprab 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fv 4796 df-ov 5527 df-oprab 5529 |
This theorem is referenced by: ov2ag 5599 |
Copyright terms: Public domain | W3C validator |