![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > fvopab3ig | GIF version |
Description: Value of a function given by ordered-pair class abstraction. (Contributed by set.mm contributors, 23-Oct-1999.) |
Ref | Expression |
---|---|
fvopab3ig.1 | ⊢ (x = A → (φ ↔ ψ)) |
fvopab3ig.2 | ⊢ (y = B → (ψ ↔ χ)) |
fvopab3ig.3 | ⊢ (x ∈ C → ∃*yφ) |
fvopab3ig.4 | ⊢ F = {〈x, y〉 ∣ (x ∈ C ∧ φ)} |
Ref | Expression |
---|---|
fvopab3ig | ⊢ ((A ∈ C ∧ B ∈ D) → (χ → (F ‘A) = B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab 5139 | . . . 4 ⊢ (Fun {〈x, y〉 ∣ (x ∈ C ∧ φ)} ↔ ∀x∃*y(x ∈ C ∧ φ)) | |
2 | fvopab3ig.3 | . . . . 5 ⊢ (x ∈ C → ∃*yφ) | |
3 | moanimv 2262 | . . . . 5 ⊢ (∃*y(x ∈ C ∧ φ) ↔ (x ∈ C → ∃*yφ)) | |
4 | 2, 3 | mpbir 200 | . . . 4 ⊢ ∃*y(x ∈ C ∧ φ) |
5 | 1, 4 | mpgbir 1550 | . . 3 ⊢ Fun {〈x, y〉 ∣ (x ∈ C ∧ φ)} |
6 | simpl 443 | . . . 4 ⊢ ((A ∈ C ∧ B ∈ D) → A ∈ C) | |
7 | eleq1 2413 | . . . . . . 7 ⊢ (x = A → (x ∈ C ↔ A ∈ C)) | |
8 | fvopab3ig.1 | . . . . . . 7 ⊢ (x = A → (φ ↔ ψ)) | |
9 | 7, 8 | anbi12d 691 | . . . . . 6 ⊢ (x = A → ((x ∈ C ∧ φ) ↔ (A ∈ C ∧ ψ))) |
10 | fvopab3ig.2 | . . . . . . 7 ⊢ (y = B → (ψ ↔ χ)) | |
11 | 10 | anbi2d 684 | . . . . . 6 ⊢ (y = B → ((A ∈ C ∧ ψ) ↔ (A ∈ C ∧ χ))) |
12 | 9, 11 | opelopabg 4705 | . . . . 5 ⊢ ((A ∈ C ∧ B ∈ D) → (〈A, B〉 ∈ {〈x, y〉 ∣ (x ∈ C ∧ φ)} ↔ (A ∈ C ∧ χ))) |
13 | 12 | biimprd 214 | . . . 4 ⊢ ((A ∈ C ∧ B ∈ D) → ((A ∈ C ∧ χ) → 〈A, B〉 ∈ {〈x, y〉 ∣ (x ∈ C ∧ φ)})) |
14 | 6, 13 | mpand 656 | . . 3 ⊢ ((A ∈ C ∧ B ∈ D) → (χ → 〈A, B〉 ∈ {〈x, y〉 ∣ (x ∈ C ∧ φ)})) |
15 | funopfv 5357 | . . 3 ⊢ (Fun {〈x, y〉 ∣ (x ∈ C ∧ φ)} → (〈A, B〉 ∈ {〈x, y〉 ∣ (x ∈ C ∧ φ)} → ({〈x, y〉 ∣ (x ∈ C ∧ φ)} ‘A) = B)) | |
16 | 5, 14, 15 | ee02 1377 | . 2 ⊢ ((A ∈ C ∧ B ∈ D) → (χ → ({〈x, y〉 ∣ (x ∈ C ∧ φ)} ‘A) = B)) |
17 | fvopab3ig.4 | . . . 4 ⊢ F = {〈x, y〉 ∣ (x ∈ C ∧ φ)} | |
18 | 17 | fveq1i 5329 | . . 3 ⊢ (F ‘A) = ({〈x, y〉 ∣ (x ∈ C ∧ φ)} ‘A) |
19 | 18 | eqeq1i 2360 | . 2 ⊢ ((F ‘A) = B ↔ ({〈x, y〉 ∣ (x ∈ C ∧ φ)} ‘A) = B) |
20 | 16, 19 | syl6ibr 218 | 1 ⊢ ((A ∈ C ∧ B ∈ D) → (χ → (F ‘A) = B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃*wmo 2205 〈cop 4561 {copab 4622 Fun wfun 4775 ‘cfv 4781 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fv 4795 |
This theorem is referenced by: fvopab4g 5388 ov6g 5600 |
Copyright terms: Public domain | W3C validator |