New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylancr | GIF version |
Description: Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
sylancr.1 | ⊢ ψ |
sylancr.2 | ⊢ (φ → χ) |
sylancr.3 | ⊢ ((ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
sylancr | ⊢ (φ → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylancr.1 | . . 3 ⊢ ψ | |
2 | 1 | a1i 10 | . 2 ⊢ (φ → ψ) |
3 | sylancr.2 | . 2 ⊢ (φ → χ) | |
4 | sylancr.3 | . 2 ⊢ ((ψ ∧ χ) → θ) | |
5 | 2, 3, 4 | syl2anc 642 | 1 ⊢ (φ → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: unipw 4118 imakexg 4300 pwexg 4329 snfi 4432 1cspfin 4544 vfintle 4547 vfin1cltv 4548 phialllem2 4618 coexg 4750 ov 5596 mpteq2da 5667 brcupg 5815 brcomposeg 5820 brcrossg 5849 frds 5936 qsexg 5983 enmap2lem5 6068 enmap1lem5 6074 enprmaplem6 6082 enpw 6088 dflec2 6211 nmembers1lem3 6271 nchoicelem19 6308 frecexg 6313 dmfrec 6317 fnfreclem1 6318 fnfreclem2 6319 fnfreclem3 6320 frec0 6322 frecsuc 6323 |
Copyright terms: Public domain | W3C validator |