Step | Hyp | Ref
| Expression |
1 | | nchoicelem5 6294 |
. . . . . . . . 9
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
¬ M ∈
( Spac ‘(2c
↑c M))) |
2 | | incom 3449 |
. . . . . . . . . . 11
⊢ ({M} ∩ ( Spac ‘(2c
↑c M))) = (( Spac ‘(2c
↑c M)) ∩
{M}) |
3 | 2 | eqeq1i 2360 |
. . . . . . . . . 10
⊢ (({M} ∩ ( Spac ‘(2c
↑c M))) = ∅ ↔ (( Spac ‘(2c
↑c M)) ∩
{M}) = ∅) |
4 | | disjsn 3787 |
. . . . . . . . . 10
⊢ ((( Spac ‘(2c
↑c M)) ∩
{M}) = ∅
↔ ¬ M ∈ ( Spac
‘(2c ↑c M))) |
5 | 3, 4 | bitri 240 |
. . . . . . . . 9
⊢ (({M} ∩ ( Spac ‘(2c
↑c M))) = ∅ ↔ ¬ M ∈ ( Spac ‘(2c
↑c M))) |
6 | 1, 5 | sylibr 203 |
. . . . . . . 8
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
({M} ∩ ( Spac ‘(2c
↑c M))) = ∅) |
7 | | snex 4112 |
. . . . . . . . 9
⊢ {M} ∈
V |
8 | | fvex 5340 |
. . . . . . . . 9
⊢ ( Spac ‘(2c
↑c M)) ∈ V |
9 | 7, 8 | ncdisjun 6137 |
. . . . . . . 8
⊢ (({M} ∩ ( Spac ‘(2c
↑c M))) = ∅ → Nc
({M} ∪ ( Spac ‘(2c
↑c M))) = ( Nc {M}
+c Nc ( Spac ‘(2c
↑c M)))) |
10 | 6, 9 | syl 15 |
. . . . . . 7
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
Nc ({M} ∪
( Spac ‘(2c
↑c M))) = ( Nc {M}
+c Nc ( Spac ‘(2c
↑c M)))) |
11 | | df1c3g 6142 |
. . . . . . . . . . 11
⊢ (M ∈ NC → 1c = Nc {M}) |
12 | 11 | adantr 451 |
. . . . . . . . . 10
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
1c = Nc {M}) |
13 | 12 | addceq2d 4391 |
. . . . . . . . 9
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) → (
Nc ( Spac
‘(2c ↑c M)) +c 1c) = (
Nc ( Spac
‘(2c ↑c M)) +c Nc {M})) |
14 | | addccom 4407 |
. . . . . . . . 9
⊢ ( Nc {M}
+c Nc ( Spac ‘(2c
↑c M))) = ( Nc ( Spac
‘(2c ↑c M)) +c Nc {M}) |
15 | 13, 14 | syl6reqr 2404 |
. . . . . . . 8
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) → (
Nc {M}
+c Nc ( Spac ‘(2c
↑c M))) = ( Nc ( Spac
‘(2c ↑c M)) +c
1c)) |
16 | | 2nnc 6168 |
. . . . . . . . . . 11
⊢
2c ∈ Nn |
17 | | ceclnn1 6190 |
. . . . . . . . . . 11
⊢
((2c ∈ Nn ∧ M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
(2c ↑c M) ∈ NC ) |
18 | 16, 17 | mp3an1 1264 |
. . . . . . . . . 10
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
(2c ↑c M) ∈ NC ) |
19 | | nchoicelem13 6302 |
. . . . . . . . . 10
⊢
((2c ↑c M) ∈ NC → 1c ≤c Nc ( Spac
‘(2c ↑c M))) |
20 | | 1cnc 6140 |
. . . . . . . . . . . 12
⊢
1c ∈ NC |
21 | 8 | ncelncsi 6122 |
. . . . . . . . . . . 12
⊢ Nc ( Spac
‘(2c ↑c M)) ∈ NC |
22 | | dflec2 6211 |
. . . . . . . . . . . 12
⊢
((1c ∈ NC ∧ Nc ( Spac
‘(2c ↑c M)) ∈ NC ) → (1c ≤c Nc ( Spac
‘(2c ↑c M)) ↔ ∃k ∈ NC Nc ( Spac
‘(2c ↑c M)) = (1c +c
k))) |
23 | 20, 21, 22 | mp2an 653 |
. . . . . . . . . . 11
⊢
(1c ≤c Nc (
Spac ‘(2c
↑c M)) ↔ ∃k ∈ NC Nc ( Spac
‘(2c ↑c M)) = (1c +c
k)) |
24 | | addccom 4407 |
. . . . . . . . . . . . . 14
⊢
(1c +c k) = (k
+c 1c) |
25 | | 0cnsuc 4402 |
. . . . . . . . . . . . . 14
⊢ (k +c 1c) ≠
0c |
26 | 24, 25 | eqnetri 2534 |
. . . . . . . . . . . . 13
⊢
(1c +c k) ≠ 0c |
27 | | neeq1 2525 |
. . . . . . . . . . . . 13
⊢ ( Nc ( Spac
‘(2c ↑c M)) = (1c +c
k) → ( Nc
( Spac ‘(2c
↑c M)) ≠
0c ↔ (1c +c k) ≠ 0c)) |
28 | 26, 27 | mpbiri 224 |
. . . . . . . . . . . 12
⊢ ( Nc ( Spac
‘(2c ↑c M)) = (1c +c
k) → Nc (
Spac ‘(2c
↑c M)) ≠
0c) |
29 | 28 | rexlimivw 2735 |
. . . . . . . . . . 11
⊢ (∃k ∈ NC Nc ( Spac
‘(2c ↑c M)) = (1c +c
k) → Nc (
Spac ‘(2c
↑c M)) ≠
0c) |
30 | 23, 29 | sylbi 187 |
. . . . . . . . . 10
⊢
(1c ≤c Nc (
Spac ‘(2c
↑c M)) → Nc ( Spac
‘(2c ↑c M)) ≠ 0c) |
31 | 18, 19, 30 | 3syl 18 |
. . . . . . . . 9
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
Nc ( Spac
‘(2c ↑c M)) ≠ 0c) |
32 | | 0cnc 6139 |
. . . . . . . . . . 11
⊢
0c ∈ NC |
33 | | peano4nc 6151 |
. . . . . . . . . . 11
⊢ (( Nc ( Spac
‘(2c ↑c M)) ∈ NC ∧
0c ∈ NC ) → (( Nc ( Spac ‘(2c
↑c M))
+c 1c) = (0c
+c 1c) ↔ Nc ( Spac
‘(2c ↑c M)) = 0c)) |
34 | 21, 32, 33 | mp2an 653 |
. . . . . . . . . 10
⊢ (( Nc ( Spac
‘(2c ↑c M)) +c 1c) =
(0c +c 1c) ↔ Nc ( Spac
‘(2c ↑c M)) = 0c) |
35 | 34 | necon3bii 2549 |
. . . . . . . . 9
⊢ (( Nc ( Spac
‘(2c ↑c M)) +c 1c) ≠
(0c +c 1c) ↔ Nc ( Spac
‘(2c ↑c M)) ≠ 0c) |
36 | 31, 35 | sylibr 203 |
. . . . . . . 8
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) → (
Nc ( Spac
‘(2c ↑c M)) +c 1c) ≠
(0c +c
1c)) |
37 | 15, 36 | eqnetrd 2535 |
. . . . . . 7
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) → (
Nc {M}
+c Nc ( Spac ‘(2c
↑c M))) ≠
(0c +c
1c)) |
38 | 10, 37 | eqnetrd 2535 |
. . . . . 6
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
Nc ({M} ∪
( Spac ‘(2c
↑c M))) ≠
(0c +c
1c)) |
39 | | addcid2 4408 |
. . . . . . . 8
⊢
(0c +c 1c) =
1c |
40 | 39 | neeq2i 2528 |
. . . . . . 7
⊢ ( Nc ({M} ∪ (
Spac ‘(2c
↑c M))) ≠
(0c +c 1c) ↔ Nc ({M} ∪ (
Spac ‘(2c
↑c M))) ≠
1c) |
41 | | df-ne 2519 |
. . . . . . 7
⊢ ( Nc ({M} ∪ (
Spac ‘(2c
↑c M))) ≠
1c ↔ ¬ Nc ({M} ∪ ( Spac ‘(2c
↑c M))) =
1c) |
42 | 40, 41 | bitri 240 |
. . . . . 6
⊢ ( Nc ({M} ∪ (
Spac ‘(2c
↑c M))) ≠
(0c +c 1c) ↔ ¬
Nc ({M} ∪
( Spac ‘(2c
↑c M))) =
1c) |
43 | 38, 42 | sylib 188 |
. . . . 5
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
¬ Nc ({M}
∪ ( Spac
‘(2c ↑c M))) = 1c) |
44 | | nchoicelem6 6295 |
. . . . . . 7
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) → (
Spac ‘M) = ({M} ∪
( Spac ‘(2c
↑c M)))) |
45 | 44 | nceqd 6111 |
. . . . . 6
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
Nc ( Spac
‘M) = Nc
({M} ∪ ( Spac ‘(2c
↑c M)))) |
46 | 45 | eqeq1d 2361 |
. . . . 5
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) → (
Nc ( Spac
‘M) = 1c ↔
Nc ({M} ∪
( Spac ‘(2c
↑c M))) =
1c)) |
47 | 43, 46 | mtbird 292 |
. . . 4
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
¬ Nc ( Spac ‘M) = 1c) |
48 | 47 | ex 423 |
. . 3
⊢ (M ∈ NC → ((M
↑c 0c) ∈ NC → ¬
Nc ( Spac
‘M) =
1c)) |
49 | 48 | con2d 107 |
. 2
⊢ (M ∈ NC → ( Nc ( Spac ‘M) = 1c → ¬ (M ↑c 0c)
∈ NC
)) |
50 | 49 | imp 418 |
1
⊢ ((M ∈ NC ∧ Nc ( Spac
‘M) = 1c) →
¬ (M ↑c
0c) ∈ NC ) |