| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfcxfrd | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfceqi.1 | ⊢ A = B |
| nfcxfrd.2 | ⊢ (φ → ℲxB) |
| Ref | Expression |
|---|---|
| nfcxfrd | ⊢ (φ → ℲxA) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcxfrd.2 | . 2 ⊢ (φ → ℲxB) | |
| 2 | nfceqi.1 | . . 3 ⊢ A = B | |
| 3 | 2 | nfceqi 2486 | . 2 ⊢ (ℲxA ↔ ℲxB) |
| 4 | 1, 3 | sylibr 203 | 1 ⊢ (φ → ℲxA) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 Ⅎwnfc 2477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-cleq 2346 df-clel 2349 df-nfc 2479 |
| This theorem is referenced by: nfcsb1d 3167 nfcsbd 3170 nfifd 3686 nfunid 3899 nfiotad 4343 nfovd 5545 |
| Copyright terms: Public domain | W3C validator |