NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfcxfrd GIF version

Theorem nfcxfrd 2488
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfceqi.1 A = B
nfcxfrd.2 (φxB)
Assertion
Ref Expression
nfcxfrd (φxA)

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2 (φxB)
2 nfceqi.1 . . 3 A = B
32nfceqi 2486 . 2 (xAxB)
41, 3sylibr 203 1 (φxA)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  wnfc 2477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-cleq 2346  df-clel 2349  df-nfc 2479
This theorem is referenced by:  nfcsb1d  3167  nfcsbd  3170  nfifd  3686  nfunid  3899  nfiotad  4343  nfovd  5545
  Copyright terms: Public domain W3C validator