New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dvelimdc | GIF version |
Description: Deduction form of dvelimc 2511. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
dvelimdc.1 | ⊢ Ⅎxφ |
dvelimdc.2 | ⊢ Ⅎzφ |
dvelimdc.3 | ⊢ (φ → ℲxA) |
dvelimdc.4 | ⊢ (φ → ℲzB) |
dvelimdc.5 | ⊢ (φ → (z = y → A = B)) |
Ref | Expression |
---|---|
dvelimdc | ⊢ (φ → (¬ ∀x x = y → ℲxB)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . 3 ⊢ Ⅎw(φ ∧ ¬ ∀x x = y) | |
2 | dvelimdc.1 | . . . . 5 ⊢ Ⅎxφ | |
3 | dvelimdc.2 | . . . . 5 ⊢ Ⅎzφ | |
4 | dvelimdc.3 | . . . . . 6 ⊢ (φ → ℲxA) | |
5 | 4 | nfcrd 2503 | . . . . 5 ⊢ (φ → Ⅎx w ∈ A) |
6 | dvelimdc.4 | . . . . . 6 ⊢ (φ → ℲzB) | |
7 | 6 | nfcrd 2503 | . . . . 5 ⊢ (φ → Ⅎz w ∈ B) |
8 | dvelimdc.5 | . . . . . 6 ⊢ (φ → (z = y → A = B)) | |
9 | eleq2 2414 | . . . . . 6 ⊢ (A = B → (w ∈ A ↔ w ∈ B)) | |
10 | 8, 9 | syl6 29 | . . . . 5 ⊢ (φ → (z = y → (w ∈ A ↔ w ∈ B))) |
11 | 2, 3, 5, 7, 10 | dvelimdf 2082 | . . . 4 ⊢ (φ → (¬ ∀x x = y → Ⅎx w ∈ B)) |
12 | 11 | imp 418 | . . 3 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎx w ∈ B) |
13 | 1, 12 | nfcd 2485 | . 2 ⊢ ((φ ∧ ¬ ∀x x = y) → ℲxB) |
14 | 13 | ex 423 | 1 ⊢ (φ → (¬ ∀x x = y → ℲxB)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 |
This theorem is referenced by: dvelimc 2511 |
Copyright terms: Public domain | W3C validator |