New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfiun | GIF version |
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) |
Ref | Expression |
---|---|
nfiun.1 | ⊢ ℲyA |
nfiun.2 | ⊢ ℲyB |
Ref | Expression |
---|---|
nfiun | ⊢ Ⅎy∪x ∈ A B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 3972 | . 2 ⊢ ∪x ∈ A B = {z ∣ ∃x ∈ A z ∈ B} | |
2 | nfiun.1 | . . . 4 ⊢ ℲyA | |
3 | nfiun.2 | . . . . 5 ⊢ ℲyB | |
4 | 3 | nfcri 2484 | . . . 4 ⊢ Ⅎy z ∈ B |
5 | 2, 4 | nfrex 2670 | . . 3 ⊢ Ⅎy∃x ∈ A z ∈ B |
6 | 5 | nfab 2494 | . 2 ⊢ Ⅎy{z ∣ ∃x ∈ A z ∈ B} |
7 | 1, 6 | nfcxfr 2487 | 1 ⊢ Ⅎy∪x ∈ A B |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 ∃wrex 2616 ∪ciun 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-iun 3972 |
This theorem is referenced by: iunab 4013 |
Copyright terms: Public domain | W3C validator |